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Abstract

Open-world object detection (OWOD), as a more gen-
eral and challenging goal, requires the model trained from
data on known objects to detect both known and unknown
objects and incrementally learn to identify these unknown
objects. The existing works which employ standard de-
tection framework and fixed pseudo-labelling mechanism
(PLM) have the following problems: (𝑖) The inclusion of de-
tecting unknown objects substantially reduces the model’s
ability to detect known ones. (𝑖𝑖) The PLM does not ade-
quately utilize the priori knowledge of inputs. (𝑖𝑖𝑖) The fixed
selection manner of PLM cannot guarantee that the model
is trained in the right direction. We observe that humans
subconsciously prefer to focus on all foreground objects and
then identify each one in detail, rather than localize and
identify a single object simultaneously, for alleviating the
confusion. This motivates us to propose a novel solution
called CAT: LoCalization and IdentificAtion Cascade De-
tection Transformer which decouples the detection process
via the shared decoder in the cascade decoding way. In the
meanwhile, we propose the self-adaptive pseudo-labelling
mechanism which combines the model-driven with input-
driven PLM and self-adaptively generates robust pseudo-
labels for unknown objects, significantly improving the abil-
ity of CAT to retrieve unknown objects.

1. Additional Experiments Material
1.1. Theory For Self-Adaptive Pseudo-labelling

For 0 < 𝑤2 < 𝑤1 < 1, we find the potential relationship
as follows: {

𝑥𝑤1 > 𝑥𝑤2 , 𝑖 𝑓 𝑥 > 1
𝑥𝑤1 < 𝑥𝑤2 , 𝑖 𝑓 𝑥 < 1 (1)

Thus, for 𝑥𝑤1 · 𝑦𝑤2 and 𝑤1 > 𝑤2, if 𝑥 > 1 and 𝑦 > 1, 𝑥 weights
more and 𝑦 weights more if 𝑥 < 1 and 𝑦 < 1.

For the self-adaptive pseudo-labelling, we first normalize
𝑠𝑜 to the range 0 to 1. Considering that the model itself has
little knowledge in the early stages of model training, the
model-driven pseudo-labelling should weigh less than the
input-driven pseudo-labelling. As the training time of the
model increases, the knowledge base of the model grows,
and the weight of the model-driven pseudo-labelling gets
bigger. Combining this with the patterns above, we update
them as follows:
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1.2. Additional Illustration For Data Split

As shown in Table.1, the OWOD split proposed in ORE
groups all VOC classes and data as 𝑇𝑎𝑠𝑘 1. The remaining
60 classes of MS-COCO are grouped into three successive
tasks (𝑇𝑎𝑠𝑘 2, 3, 4) with semantic drifts. However, it leads
data leakage across tasks since different classes which be-
long to a super-categories are introduced in different tasks.
The MS-COCO split proposed in OW-DETR is a stricter
split, where all the classes of a super-categories are intro-
duced at a time in a task. For OWOD split, Task 1 contains
16,551 training images and 4,952 testing images. Task 2
contains 45,520 images in training set and 1,914 images in
testing set. For Task 3, there are 39,402 images in train-
ing set and 1,642 images in testing set. Task 4 consists of
40,260 training images and 1,738 testing images. For MS-
COCO, there are 89,490 training images and 3,793 testing
images in Task 1. For Task 2, there are 55,870 images in
training set and 2,351 images in testing set. Task 3 contains
39,402 images in training set and 1,642 images in testing
set. Task 4 contains 38,902 images in training set and 1,691
images in testing set.



Table 1. The table shows task composition in the OWOD and MS-COCO split for Open-world evaluation protocol. The semantics of each
task and the number of images and instances(objects) across splits are shown.

Task ID Task 1 Task 2 Task 3 Task 4

OWOD split

Semantic split
VOC

Classes
Outdoor, Accessories,

Appliances, Truck
Sports,
Food

Electronic, Indoor,
Kitchen, Furniture

# training images 16551 45520 39402 40260
# test images 4952 1914 1642 1738
# train instances 47223 113741 114452 138996
# test instances 14976 4966 4826 6039

MS-COCO split

Semantic split
Animals,Person,

Vehicles
Appliances, Accessories,

Outdoor, Furniture
Sports,
Food

Electronic, Indoor,
Kitchen

# training images 89490 55870 39402 38903
# test images 3793 2351 1642 1691
# train instances 421243 163512 114452 160794
# test instances 17786 7159 4826 7010

1.3. Additional Implementation Details

For selective search, we use the 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑒 𝑠𝑒𝑎𝑟𝑐ℎ

function in Selectivesearch library and the scale, sigma,
min size of parameter is set to 500, 0.9 and 200, respec-
tively. In addition, we eliminate candidate boxes with less
than 2000 pixel points. The multi-scale feature maps ex-
tracted from the backbone are projected to feature maps
with 256-channels using 1× 1 convolution filters and used
as multi-scale input to deformable transformer encoder. The
PyTorch library and eight NVIDIA RTX 3090 GPUs are
used to train our CAT framework with a batch size of 3 im-
ages per GPUs. In each task, the CAT framework is trained
for 50 epochs and finetuned for 20 epochs during the in-
cremental learning step. We train our CAT using the Adam
optimizer with a base learning rate of 2× 10−4, 𝛽1 = 0.9,
𝛽2 = 0.999, and weight decay of 10−4. For finetuning dur-
ing incremental step, the learning rate is reduced by a factor
of 10 and trained using a set of 50 stored exemplars per
known class.

2. Additional Results

2.1. Additional Qualitative Results

Figure.1 describes the visualization results comparison
between CAT and Oracle. We visualize the detection results
of our model for known and unknown objects, as well as the
ground truth on the tasks corresponding to the weights, in-
cluding the labels of known and unknown categories, where
the objects of unknown categories are the objects of other
categories that have not yet appeared in the total categories
of the dataset. Our model can accurately detect known
objects and unknown objects outside the total class of the

dataset, such as the electric plug and sound switch in the
first row, the camera in the second row and the kitten toy
in the third row. It is also worth noting that although our
model detects the audio, it does not identify it as an un-
known object, but as a remote, showing the limitations of
our model.

Figure.2 exhibits the visualization performance on in-
cremental object detection. We visualize the detection re-
sults of the weights corresponding to different tasks for the
same scenario. The results show that our CAT can identify
unknown kinds of objects as the unknown class and accu-
rately identify their classes after incrementally learning the
unknown classes, such as sports ball and tennis racket in
the first row, surfboard in the second row and traffic light in
the third row.

3. Societal Impact and Limitations
Open-world object detection makes artificial intelligence

smarter to face more problems in real life. It takes object de-
tection to a cognitive level, as the model requires more than
simply remembering the objects learned, it requires deeper
thinking about the scene.

Although our results demonstrate significant improve-
ments over ORE and OW-DETR in terms of WI, A-OSE,
U-Recall and mAP, the performances are still on the lower
side due to the challenging nature of the open-world de-
tection problem. In this paper, we are mainly committed
to enhance the model’s ability to explore unknown classes.
However, the confidence level of our model for the detec-
tion of unknown objects still needs to be improved, and this
is what we will strive for in the future.



Figure 1. Visualization results comparison between CAT and Oracle. We visualize the detection results of our model for known and
unknown objects, as well as the ground truth on the tasks corresponding to the weights, including the labels of known categories and the
labels of unknown categories, where the objects of unknown categories are the objects of other categories that have not yet appeared in the
total categories of the dataset. Our model can accurately detect known objects and unknown objects outside the total class of the dataset,
such as the electric plug and sound switch in the first row, the camera in the second row and the kitten toy in the third row. It is also worth
noting that although our model detects the audio, it does not identify it as an unknown object, but as a remote, showing the limitations of
our model.



Figure 2. Visualization performance on incremental object detection. We visualize the detection results of the weights corresponding to
different tasks for the same scenario. The results show that our CAT can identify unknown kinds of objects as the unknown class and
accurately identify their classes after incrementally learning the unknown classes, such as sports ball and tennis racket in the first row,
surfboard in the second row and traffic light in the third row.


