
Appendix A: Related Work
In practice, the dataset usually tends to follow a long-

tailed distribution, which leads to models with very large
variances in performance on each class. It should be noted
that most researchers default to the main motivation for
long-tail visual recognition is that classes with few sam-
ples are always weak classes. Therefore, numerous meth-
ods have been proposed to improve the performance of the
model on tail classes. [73] divides these methods into three
fields, namely class rebalancing, information augmentation,
and module improvement. Unlike the above, [50] and [3]
observe that the number of samples in the class does not
exactly show a positive correlation with the accuracy, and
the accuracy of some tail classes is even higher than the
accuracy of the head class. Therefore, they propose to use
other measures to gauge the learning difficulty of the classes
rather than relying on the sample number alone. In the fol-
lowing, we first present past research up to [50] [3] and lead
to our work.

Class Rebalancing

The motivation for class rebalancing is intuitive; re-
searchers have argued that tail classes with fewer sam-
ples lead to an imbalance in class-level loss and thus an
inconsistent degree of learning for each class. There-
fore cost-sensitive learning [18, 66, 75, 78] and resampling
[9, 19, 57, 74] are proposed to rebalance the losses.

Cost-sensitive learning is proposed to balance the losses
incurred by all classes, usually by applying a larger penalty
to the tail classes on the objective function (or loss func-
tion) [14, 37, 46, 49, 50, 52]. [46] proposes to adjust the loss
with the label frequencies to alleviate class bias. [37] not
only assigns weights to the loss of each class, but also as-
signs higher weights to hard samples. Recent studies have
shown that the effect of reweighting losses by the inverse
of the number of samples is modest [41, 42]. Some meth-
ods that produce more “smooth” weights for reweighting
perform better, such as taking the square root of the num-
ber of samples as the weight [41]. [14] attributes the better
performance of this smoother method to the existence of
marginal effects. In addition, [2]proposes to learn the clas-
sifier with class-balanced loss by adjusting the weight decay
and MaxNorm in the second stage.

Resampling methods are divided into oversampling and
undersampling [19, 21, 30]. The idea of oversampling is
to randomly sample the tail classes to equalize the number
of samples and thus optimize the classification boundaries.
The undersampling methods balance the number of sam-
ples by randomly removing samples from the head classes.
For example, [58] finds that training with a balanced subset
of a long-tailed dataset is instead better than using the full
dataset. In addition, [30, 77] fine-tune the classifier via a
resampling strategy in the second phase of decoupled train-

ing. [60] continuously adjusts the distribution of resampled
samples and the weights of the two-loss terms during train-
ing to make the model perform better. [69] employs the
model classification loss from an additional balanced val-
idation set to adjust the sampling rate of different classes.

Information Augmentation

Class rebalancing is inherently unable to handle miss-
ing information because no additional information is intro-
duced. Information augmentation aims to improve the per-
formance on tail classes by introducing additional informa-
tion into the model training. This method is classified into
two types: knowledge transfer and data augmentation.

There are four main schemes of knowledge transfer,
which are head-to-tail knowledge transfer, model pre-
training, knowledge distillation, and self-training. Head-
to-tail knowledge transfer aims to transfer knowledge from
the head classes to the tail classes to improve the perfor-
mance of the tail classes. FTL [67] assumes that the fea-
ture distributions of the common and UR classes (i.e., rare
classes) have the same variance, so the variance from the
head classes is used to guide the feature enhancement of
the tail classes. LEAP [39] transfers the intra-class angle
distribution of features to the tail classes and constructs a
“feature cloud” centered on each feature to expand the dis-
tribution of the tail classes. Similar to the adversarial at-
tack, M2m [31] proposes to transform some samples from
the head class into the tail samples by perturbation-based
optimization to achieve tail augmentation. OFA [10] de-
composes the features of each class into class-generic fea-
tures and class-specific features. During training, the tail
class-specific features are fused with the head class-generic
features to generate new features to augment the tail classes.
GIST [38] proposes to transfer the geometric information of
the feature distribution boundaries of the head classes to the
tail classes by increasing the classifier weights of the tail
classes. The motivation of the recently proposed CMO [45]
is very intuitive, it argues that the images from the head
classes have rich backgrounds, so the images from the tail
classes can be pasted directly onto the rich background im-
ages of the head classes to increase the richness of the tail
images. The remaining three types of schemes are relatively
few. [15] first pre-trains the model with all the long-tailed
samples, and then fine-tunes the model on a balanced train-
ing subset. [65] proposes to pre-train the model with self-
supervised learning and perform standard training on the
long-tailed data. LST [26] utilizes knowledge distillation to
overcome catastrophic forgetting in incremental learning.

Data augmentation in long-tailed recognition improves
the performance of tail classes by improving conventional
data augmentation methods. MiSLAS [76] suggests adopt-
ing mixup to augment feature learning, while not us-
ing mixup in classifier learning. FASA [69] proposes to



generate features based on Gaussian prior and evaluate
weak classes on a balanced dataset to adjust the sampling
rate. MetaSAug [35] generates augmented features for tail
classes with ISDA.

Module Improvement

In addition to information enhancement to improve per-
formance from a data perspective, researchers have de-
signed numerous network modules for long-tailed recog-
nition. The methods in this section can be divided into
representation learning, classifier design, decoupled train-
ing, and ensemble learning. Decoupled training divides the
training process into representation learning and classifier
learning. LMLE [27], CRL [17], KCL [29] and PaCo [13]
introduce metric learning methods to increase the differenti-
ation of the representation and make the model more robust
to data distribution shifts. HFL [43] proposes to hierarchi-
cally cluster all classes into leaves of a tree and then im-
prove the generalization performance of the tail classes by
sharing the parameters of the parent nodes or similar leaves.

Ensemble learning has shown great potential in long-
tailed recognition. BBN [77] designed a two-branch net-
work to rebalance the classifier, which is consistent with
the idea of decoupled training. To avoid decoupled training
damaging the performance of the head class, SimCal [57]
trained networks with dual branches, one for rebalancing
the classifier and the other for maintaining the performance
of the head class. ACE [7], RIDE [58], and TADE [72]
introduced multiple experts with specific complementary
capabilities, which led to a significant improvement in the
overall performance of the model.

Class-Difficulty Based Methods

The study of class difficulty is most relevant to our
work. The methods in the three domains presented above
almost all assume that classes with few samples are the most
difficult classes to be learned, and therefore more attention
is given to these classes. However, recent studies [3, 50]
have observed that the performance of some tail classes is
even higher than that of the head classes, and that the per-
formance of different classes varies on datasets with per-
fectly balanced samples. These phenomena suggest that the
sample number is not the only factor that affects the perfor-
mance of classes. The imbalance in class performance is
referred to as the “bias” of the model, and [50] defines the
model bias as

bias = max(
maxNc=1 Ac

minNc′=1 Ac′ + ε
− 1, 0),

where Ac denotes the accuracy of the c-th class. When
the accuracy of each class is identical, bias = 0. [50] com-
putes the difficulty of class c using 1 − Ac and calculates

the weights of the loss function using a nonlinear func-
tion of class difficulty. Unlike [50], [3] proposes a model-
independent measure of classification difficulty, which di-
rectly utilizes the data matrix to calculate the semantic scale
of each class to represent the classification difficulty. As
with the sample number, model-independent measures can
help us understand how deep neural networks learn from
data. When we get data from any domain, if we can mea-
sure the difficulty of each class directly from the data, we
can guide the researchers to collect the difficult classes in
a targeted manner instead of blindly, greatly facilitating the
efficiency of applying AI in practice.

In this work, we propose to consider the classification
task as the classification of perceptual manifolds. The influ-
ence of the geometric characteristics of the perceptual man-
ifold on the classification difficulty is further analyzed, and
feature learning with curvature balanced is proposed.

Appendix B: The Proof and Derivation of Sec-
tion 3.3

First, recall the definition of the degree of separation of
the perceptual manifold as follows.

Definition 1 (The Separation Degree of Perceptual Mani-
fold). Suppose there are C perceptual manifolds {M i}Ci=1,
which consist of point sets {Zi = [zi,1, . . . , zi,mi ] ∈

Rp×mi}Ci=1. Let Z = [Z1, . . . , ZC ] ∈ Rp×
∑C

j=1mj , Z ′ =

[Z1, . . . , Zi−1, Zi+1, . . . , ZC ] ∈ Rp×((
∑C

j=1mj)−mi), we
define the degree of separation between the perceptual man-
ifold M i and the rest of the perceptual manifolds as

S(M i) =
V ol(Z)− V ol(Z ′)

V ol(Zi)
.

The following analysis is performed for the case when
C = 2 and V ol(Z2) > V ol(Z1). According to our mo-
tivation, the measure of the degree of separation between
perceptual manifolds should satisfy S(M2) > S(M1).

If S(M2) > S(M1) holds, then we can get

V ol(Z)V ol(Z1)− V ol(Z1)
2 > V ol(Z)V ol(Z2)− V ol(Z2)

2,

⇐⇒ V ol(Z)(V ol(Z1)− V ol(Z2)) > V ol(Z1)
2 − V ol(Z2)

2,

⇐⇒ V ol(Z) < V ol(Z1) + V ol(Z2).

We prove that V ol(Z) < V ol(Z1) + V ol(Z2) holds when
V ol(Z2) > V ol(Z1), and the details are as follows.

Proof Since the function log2 det(·) is strictly concave, the
real symmetric positive definite matrices I + 1

mZTZ and
I + 1

mdiag{ZT
1 Z1, Z

T
2 Z2} satisfy [6]

log2 det(I +
1

m
ZTZ) ≤ log2 det(I +

1

m
diag{ZT

1 Z1, Z
T
2 Z2})

+tr((I +
1

m
diag{ZT

1 Z1, Z
T
2 Z2})T (I +

1

m
ZTZ)).



Also because

log2 det(I +
1

m
diag{ZT

1 Z1, Z
T
2 Z2}) =

log2 det(I +
1

m
ZT
1 Z1) + log2 det(I +

1

m
ZT
2 Z2)

and

tr((I +
1

m
diag{ZT

1 Z1, Z
T
2 Z2})T (I +

1

m
ZTZ))

= tr(diag{I, I}) = m.

We can get

log2 det(I +
1

m
ZTZ) ≤ log2 det(I +

1

m
ZT
1 Z1)

+ log2 det(I +
1

m
ZT
2 Z2),

i.e., V ol(Z) < V ol(Z1) + V ol(Z2) holds.

The above analysis shows that the proposed measure
meets our requirements and motivation. The formula for
calculating the degree of separation between perceptual
manifolds can be further reduced to

S(M i) =

log2 det(I +
1∑C

j=1 mj

ZZT )

log2 det(I +
1
mi

ZiZT
i )

−
log2 det(I +

1∑C
j=1 mj

Z ′Z ′T )

log2 det(I +
1
mi

ZiZT
i )

=

log2

det(I+ 1∑C
j=1 mj

ZZT )

det(I+ 1∑C
j=1,j ̸=i mj

Z′Z′T )

log2 det(I +
1
mi

ZiZT
i )

= logδ det((I +
Z ′Z ′T∑C
j=1,j ̸=imj

)−1(I +
ZZT∑C
j=1mj

)),

δ = det(I +
1

m
ZiZ

T
i ).

Appendix C: Pseudocode for Measure The Ge-
ometry Properties of Perceptual Manifold

In Section 3 we propose measures for the perceptual
manifold’s volume, separation, and curvature. We provide
the pseudo-code below to show how to apply these methods
in practice. Our approach can be applied not only to calcu-
late the geometric properties of feature manifolds but also
to the image space. In addition to image data, other types of
data also obey the manifold distribution law, so our method
can be employed to evaluate them as well.

Pseudocode for The Volume of Perceptual Manifold

We give the calculation procedure of perceptual mani-
fold volume in Algorithm 2. In addition, the volume of the
data manifold can also be calculated directly in image space
(Algorithm 3). Unlike the method for calculating the vol-
ume of the perceptual manifold, it is necessary to shrink and
flatten the image into vectors. The reason for this is that the
dimensionality of the image space is often very high, so we
alleviate the dimensionality catastrophe by simply down-
sampling the dimensions.

Pseudocode for The Separation Degree of Percep-
tual Manifold

The distributions of different classes are far from each
other to give the model higher discriminative power. Eu-
clidean distance or cosine distance between class centers is
often used as the measure of distance between classes, and
these two distances are also commonly used as loss func-
tions when constructing sample pairs. However, maximiz-
ing the distance between proxy points or samples does not
keep one class away from all the remaining classes at the
same time, and the distance between class centers does not
reflect the degree of overlap of distributions. Therefore, we

Figure 9. The curve of the degree of separation of two spherical
point cloud that varies with the distance between spherical centers.

define the degree of separation of the perceptual man-
ifold based on the volume of the perceptual manifold,
which is applicable to the case of multiple perceptual man-
ifolds and is an asymmetric measure. Algorithm 4 shows
in detail how to calculate the degree of separation of the
perceptual manifold in practice. In addition, we add more



Algorithm 2 Pseudocode for The Volume of Perceptual Manifold

Input: Training set D = {(xi, yi)}Mi=1 with the total number C of classes. A CNN {f(x, θ1), g(z, θ2)}, where f(·) and g(·)
denote the feature sub-network and classifier, respectively.
Output: The volume of all perceptual manifolds.

1: for j = 1 to C do
2: Select the sample set Dj = {(xi, yi)}

mj

i=1 for class j from D, mj is the number of samples for class j.
3: Calculate the feature embedding Zj = {zi | zi = f(xi, θ1)}

mj

i=1 of Dj , Zj =
[
z1, z2, . . . , zmj

]
∈ Rp×mj .

4: Zj = Zj −NumPy.mean (Zj , 1).
5: Calculate the covariance matrix Σj =

1
mj

ZjZ
T
j .

6: Calculate the volume Vol (Σj) =
1
2 log2 det (I +Σj) of the perceptual manifold corresponding to class j.

7: end for

Algorithm 3 Pseudocode for The Volume of Data Manifold

Input: Training set D = {(xi, yi)}Mi=1 with the total number C of classes. A CNN {f(x, θ1), g(z, θ2)}, where f(·) and g(·)
denote the feature sub-network and classifier, respectively.
Output: The volume of all data manifolds.

1: for j = 1 to C do
2: Select the sample set Dj = {(xi, yi)}

mj

i=1 for class j from D, mj is the number of samples for class j.
3: Resize the image to (imagesize, imagesize, 3).
4: Flatten the image into a vector of length d = imagesize× imagesize× 3 and store it in D′

j =
[
x′
1, x

′
2, . . . , x

′
mj

]
∈

Rd×mj .
5: D′

j = D′
j −NumPy.mean

(
D′

j , 1
)
.

6: Calculate the covariance matrix Σj =
1
mj

D′
jD

′T
j .

7: Calculate the sample volume Vol (Σj) =
1
2 log2 det (I +Σj) for class j.

8: end for

results to Fig 2 in Fig 9, where it can be clearly observed
that as the difference in volume between the two spherical
point cloud manifolds becomes larger, the difference in the
degree of separation between the two increases, a result that
is fully consistent with our motivation.

Pseudocode for the Mean Gaussian Curvature of
The Perceptual Manifold

The complexity of the perceptual manifold reflects the
extraction ability of the deep neural network for the input
image [12]. [33] proposed to decompose the manifold into
multiple pieces, each of which is homogeneously mapped to
a linear space, and the lower limit of the number of pieces
in all decomposition methods defines the complexity of the
manifold. However, there is no way to know the quantitative
expression of the point cloud perceptual manifold, and it is
difficult to find its homogeneous mapping.

We give the analytical solution for estimating the curva-
ture of the perceptual manifold in Section 3.4, but the whole
derivation process is complicated. Therefore, we clearly
list the steps for calculating the curvature of the perceptual
manifold in Algorithm 5, so that it can be easily understood
and used by other researchers.

Figure 10. Curves of the separation degree of perceptual manifolds
with training epoch on CIFAR-10.

Appendix D: More Experimental Results and
Analysis for Section 4.1

We observed on Fashion-MNIST and CIFAR-10 that
learning led to a progressive increase in the separation de-
gree of the perceptual manifolds, and more results are added
in Fig 10. It can be seen that the separation degree of all per-
ceptual manifolds in CIFAR-10 increases with the training
epoch. Section 4.3 presents the Pearson correlation coeffi-
cient between the separation degree of the perceptual man-
ifold and the class accuracy over 0.6 in the early stages of



Algorithm 4 Pseudocode for The Separation Degree of Perceptual Manifold

Input: Training set D = {(xi, yi)}Mi=1 with the total number C of classes. A CNN {f(x, θ1), g(z, θ2)}, where f(·) and g(·)
denote the feature sub-network and classifier, respectively.
Output: The volume of all data manifolds.

1: for j = 1 to C do
2: Select the sample set Dj = {(xi, yi)}

mj

i=1 for class j from D, mj is the number of samples for class j.
3: Calculate the feature embedding Zj = {zi | zi = f(xi, θ1)}

mj

i=1 of Dj , Zj =
[
z1, z2, . . . , zmj

]
∈ Rp×mj .

4: end for
5: There exist C perceptual manifolds {M i}Ci=1, which consist of point sets {Zi = [zi,1, . . . , zi,mi

] ∈ Rp×mi}Ci=1. Let

Z = [Z1, . . . , ZC ] ∈ Rp×
∑C

j=1mj .
6: for i = 1 to C do

7: Let Z ′ = [Z1, . . . , Zi−1, Zi+1, . . . , ZC ] ∈ Rp×((
∑C

j=1mj)−mi).
8: Calculate the degree of separation S(M i) = logδ det((I +

Z′Z′T∑C
j=1,j ̸=imj

)−1(I + ZZT∑C
j=1mj

)), δ = det(I + 1
mZiZ

T
i )

for perceptual manifold M i.
9: end for

Figure 11. The degree of separation and corresponding class ac-
curacy of all perceptual manifolds on CIFAR-10.

training, which we further validate. ResNet-18 was trained
on CIFAR-10, and when the epoch reached 10, features of
samples from all classes were extracted with ResNet-18,
and the accuracy of each class was tested. The separation
degree of each perceptual manifold is calculated utilizing
the features, and then the separation degree of all perceptual
manifolds and the corresponding class accuracy are plotted
in Fig 11. We found that the two were indeed highly cor-
related, and additional experimental results provide a more
detailed analysis for the discovery shown in Fig 6.

Appendix E: More Experimental Results and
Analysis for Section 4.2

We add more results in Fig 12. The experiments amply
show that learning makes each perceptual manifold flatter,
which confirms our speculation that the flatter the percep-
tual manifold is, the easier it is to decode. It is important
to note that the curvature of the different perceptual mani-
folds shows differences as the training epoch increases. The
correlation between curvature of different magnitudes and

Figure 12. Curves of the complexity of perceptual manifolds with
training epochs on CIFAR-10.

class accuracy increases with increasing training epochs.
We train ResNet-18 on CIFAR-10 and use ResNet-18 to ex-
tract features from all samples when the training epoch is
50. The inverse of the curvature of each perceptual mani-
fold is calculated, while the accuracy of each class is tested,
and both are plotted in Fig 13. It can be seen that the in-
verse of the curvature of perceptual manifold does have a
high correlation with the corresponding class accuracy in
the late training phase.

Appendix F: The Derivation of Curvature Reg-
ularization (Section 5.2)

Here, we will derive the final result step by step accord-
ing to three design principles of curvature regularization.
First recall the three principles.

(1) The greater the curvature of a perceptual manifold, the
stronger the penalty for it.

(2) When the curvature is balanced, the penalty strength is
the same for each perceptual manifold.



Algorithm 5 Pseudocode for the Mean Gaussian Curvature of The Perceptual Manifold

Input: Given a point cloud perceptual manifold M , which consists of a p-dimensional point set {z1, . . . , zn}. Denote by zji
the j-th neighbor point of zi and ui the normal vector at zi.
Output: The mean Gaussian curvature of the perceptual manifold M .

1: for i = 1 to n do
2: Select k neighbor points zji , j = 1, . . . , k of zi and let Y = [zi, z

1
i , . . . , z

k
i ] ∈ Rp×k.

3: Y = Y −NumPy.mean (Y, 1).
4: Calculate the local covariance matrix 1

kY Y T .
5: Diagonalize 1

kY Y T as UTDU with D = diag(λ1, . . . , λp), λ1 ≥ · · · ≥ λm+1 > λm+2 = · · · = 0, U =
[ξ1, . . . , ξp] ∈ Rp×p, ∥ξi∥2 = 1, i = 1, . . . , p, ⟨ξa, ξb⟩ = 0(a ̸= b).

6: Let ui = λm+1.
7: The k neighbors of zi are projected into the affine space zi+⟨ξ1, . . . , ξm⟩ and denoted as oj = [(zji −zi)·ξ1, . . . , (zji −

zi) · ξm]T ∈ Rm, j = 1, . . . , k.
8: Denote by oj [m] the m-th component (zji−zi)·ξm of oj . We use zi and k neighbor points to fit a quadratic hypersurface

f(θ) with parameter θ ∈ Rm×m. The hypersurface equation is denoted as f(oj , θ) = 1
2

∑
a,bθa,boj [a] oj [b] , j ∈

{1, . . . , k}.
9: Expand the parameter θ of the hypersurface into the column vector θ = [θ1,1, . . . , θ1,m, θ2,1, . . . , θm,m]

T ∈ Rm2

..
10: Organize the k neighbor points {oj}kj=1 of zi according to the following form: Organize the k neighbor points {oj}kj=1

of zi according to the following form:

O(zi) =


o1 [1] o1 [1] o1 [1] o1 [2] · · · o1 [m] o1 [m]
o2 [1] o2 [1] o2 [1] o2 [2] · · · o2 [m] o2 [m]

...
...

. . .
...

ok [1] ok [1] ok [1] ok [2] · · · ok [m] ok [m]

 ∈ Rk×m2

.

11: The target value is T =
[
(z1i − zi) · ui, (z

2
i − zi) · ui, . . . , (z

k
i − zi) · ui

]T ∈ Rk.

12: Solve for ∂
∂θ (

1
2 tr

[
(O(zi)θ − T )

T
(O(zi)θ − T )

]
) = 0 to get θ = (O(zi)

TO(zi))
−1O(zi)

TT .
13: The Gauss curvature of the perceptual manifold M at zi can be calculated as G(zi) = det(θ) =

det((O(zi)
TO(zi))

−1O(zi)
TT ).

14: end for
15: The average Gaussian curvature 1

n

∑n
i=1G(zi) of the perceptual manifold M is the average of the Gauss curvatures at all

points on M .

Figure 13. The inverse of the mean Gaussian curvature of all per-
ceptual manifolds and the accuracy of all classes on CIFAR-10.

(3) The sum of the curvatures of all perceptual manifolds
tends to decrease.

In order to propose curvature regularization in a reason-
able way, we start from softmax cross-entropy loss to in-

spire our method. Given a C classification task, suppose
a sample x is labeled as Yk and it is predicted as each
class with probabilities P1, P2, . . . , PC , respectively. The
cross-entropy loss generated by sample x is calculated as
L(x) =

∑C
i=1 − Yi log(Pi), where Yk = 1, Yi = 0, i ̸= k.

The goal of L(x) is to make log(Pk) converge to 0, i.e.,
Pk converges to 1, at which point Pi(i ̸= k) converges to
0. Unlike cross-entropy loss, which can pull apart the dif-
ference between Pk and other probabilities, we expect the
mean Gaussian curvature of the C perceptual manifolds to
converge to equilibrium.

Assume that the mean Gaussian curvatures of the C
perceptual manifolds are G1, G2, . . . , GC , and perform the
maximum normalization on them. The − log(Gk) loss can
make Gk converge to 1. Therefore, perform a negative log-
arithmic transformation on the curvature of all perceived
manifolds and use it as loss, which can make each curvature



Figure 14. All curvatures smaller than G1 gradually increase
driven by the loss function, and the smaller the curvature, the
greater the resulting loss.

converge to 1 and thus achieve curvature balance. However,
the above operation violates the third design principle of
curvature regularization, which is that the sum of curvatures
of all perceptual manifolds tends to decrease. As shown in
Fig 14, all curvatures smaller than G1 gradually increase
driven by the loss function, and the smaller the curvature,
the greater the resulting loss. To solve this problem, we up-
date each curvature to the inverse of itself before performing
the maximum normalization of the curvature. Eventually,
the curvature penalty term of the perceptual manifold M i

is denoted as − log(
G−1

i

max{G−1
1 ,...,G−1

C } ). Further, the overall
curvature regularization term is denoted as

LCurvature =
∑C

i=1 − log(
G−1

i

max{G−1
1 , . . . , G−1

C }
).

As shown in Fig 15, the perceptual manifold with the small-
est curvature produces no loss, and the larger the curvature,
the larger the loss. LCurvature causes the curvature of all
the perceptual manifolds to converge to the value with the
smallest curvature while achieving equilibrium.

Figure 15. The perceptual manifold with the smallest curvature
produces no loss, and the larger the curvature, the larger the loss.

Appendix G: Datasets and Implementation De-
tails (Section 6)
Datasets and Evaluation Metrics

We conducted experiments on artificially created
CIFAR-10-LT, CIFAR-100-LT [14], ImageNet-LT [14, 47],

and real-world long-tailed iNaturalist2018 [55] to validate
the effectiveness and generalizability of our method. For a
fair comparison, the training and test images of all datasets
are officially split, and the Top-1 accuracy on the test set is
utilized as a performance metric.

• CIFAR-10-LT and CIFAR-100-LT are long-tailed
datasets including five imbalance factors (IF =
10, 20, 50, 100, 200) generated based on CIFAR-10
and CIFAR-100, respectively. The imbalance factor
(IF) is defined as the value of the number of the most
frequent class training samples divided by the number
of the least frequent class training samples.

• ImageNet-LT is a long-tailed subset of ILSVRC 2012
with an imbalance factor of 256, which contains 1000
classes totaling 115.8k images, with a maximum of
1280 images and a minimum of 5 images per class.
The balanced 50k images were used for testing.

• The iNaturalist species classification dataset is a
large-scale real-world dataset that suffers from an ex-
tremely unbalanced label distribution. The 2018 ver-
sion we selected consists of 437, 513 images from
8, 142 classes. The maximum class is 1, 000 images
and the minimum class is 2 images (IF = 500).

• We use the ILSVRC2012 split contains 1, 281, 167
training and 50, 000 validation images. Each class of
CIFAR-100 contains 500 images for training and 100
images for testing.

Implementation Details

CIFAR-10/100-LT. To set up a fair comparison, we used
the same random seed to make CIFAR-10/100-LT, and fol-
lowed the implementation of [8]. We trained ResNet-32 by
SGD optimizer with a momentum of 0.9, and a weight de-
cay of 2× 10−4.

ImageNet-LT and iNaturalist2018. We use ResNext-
50 [63] on ImageNet-LT and ResNet-50 [22] on iNatural-
ist2018 as the network backbone for all methods. And we
conduct model training with the SGD optimizer based on
batch size 256 (for ImageNet-LT) / 512 (for iNaturalist),
momentum 0.9, weight decay factor 0.0005, and learning
rate 0.1 (linear LR decay).

ImageNet and CIFAR-100. On ImageNet, we use ran-
dom clipping, mixup [70], and cutmix [68] to augment the
training data, and all models are optimized by Adam with
batch size of 512, learning rate of 0.05, momentum of 0.9,
and weight decay factor of 0.0005. On CIFAR-100, we set
the batch size to 64 and augment the training data using ran-
dom clipping, mixup, and cutmix. An Adam optimizer with
learning rate of 0.1 (linear decay), momentum of 0.9, and
weight decay factor of 0.005 is used to train all networks.



Appendix H: More Analysis of Dynamic Cur-
vature Regularization

Here, we explored the following two questions:

(1) Is the curvature more balanced after training with CR?

(2) Did the correlation between curvature imbalance and
class accuracy decrease after training with CR?

Recall that in Section 6.4, we trained multiple backbone
networks on ImageNet and CIFAR-100. The features of all
samples were extracted using ResNet-18 that was trained
on ImageNet and CIFAR-100 with CE and with CE + CR,
respectively, and the curvature of each perceptual manifold
was calculated. The degree of imbalance is measured by
the variance of the curvature of all perceived manifolds; the
larger the variance, the more imbalanced the curvature. The
experimental results are shown in Table 4, where the curva-
ture of the perceptual manifolds represented by the ResNet-
18 trained with curvature regularization is more balanced.

Table 4. The variance of the curvature of all perceptual manifolds.

ImageNet CIFAR-100
ResNet-18

CE 25.7 20.4
CE + CR 14.2 (-11.5) 11.8 (-8.6)

VGG-16
CE 27.4 23.5

CE + CR 13.8 (-13.6) 13.3 (-10.2)

Table 5. The Pearson correlation coefficient between the curvature
of the perceptual manifold and the corresponding class accuracy.

ImageNet CIFAR-100
ResNet-18

CE -0.583 -0.648
CE + CR -0.257 (+0.326) -0.285 (+0.363)

VGG-16
CE -0.569 -0.635

CE + CR -0.226 (+0.343) -0.251 (+0.384)

We still use CE and CE + CR to train ResNet-18 on Im-
ageNet and CIFAR-100, respectively, and then test the ac-
curacy of two ResNet-18 on each class. The features of all
samples were extracted using two ResNet-18 and the mean
Gaussian curvature of each perceptual manifold was cal-
culated. We calculated the Pearson correlation coefficients
between the class accuracy and the curvature of the corre-
sponding perceptual manifold for ResNet-18 trained with
CE and with CE + CR, respectively. The experimental re-
sults are presented in Table 5, where it can be seen that the
negative correlation between the mean Gaussian curvature
of the perceptual manifold and the class accuracy decreases
significantly after using curvature regularization. The same

experiments are performed for VGG-16 and ResNet-18 in
Tables 4 and 5.

Appendix I: Future Work
The model-independent measure of data difficulty

The performance of the model on different classes will
vary. The bias is not introduced by the model structure,
but by the characteristics of the data itself which affect the
model’s performance. Therefore, it is very important to pro-
pose model-independent measurements to characterize the
data itself, and this work will greatly contribute to our un-
derstanding of deep neural networks. In this paper, the ef-
fect of volume, separation and curvature of data manifolds
on the model bias is explored from a geometric perspective.
It provides a new direction for future work, namely the ge-
ometric analysis of deep neural networks.

The geometric perspective of data classification

Natural datasets have intrinsic patterns that can be gener-
alized to the manifold distribution principle: the distribution
of a class of data is close to a low-dimensional manifold.
Data classification can be regarded as the unwinding and
separation of manifolds. When a data manifold is entangled
with other perceptual manifolds, the difficulty of classifying
that manifold increases. Typically, a deep neural network
consists of a feature extractor and a classifier. Feature learn-
ing can be considered as manifold unwinding, and a well-
learned feature extractor is often able to unwind multiple
manifolds for the classifier to decode. In this view, all fac-
tors about the manifold complexity may affect the model’s
classification performance. Therefore, we suggest that fu-
ture work can explore the inter-class long-tailed problem
from a geometric perspective.

The geometric perspective of object detection

In the field of object detection, it is often encountered
that although a class does not appear frequently, the model
can always detect such instances efficiently. It is easy to ob-
serve that classes with simple patterns are usually easier to
learn, even if the frequency of such classes is low. There-
fore, classes with low frequency in object detection are not
necessarily always harder to learn. We believe that it is a
valuable research direction to analyze the richness of the
instances contained in each class, and then pay more atten-
tion to the hard classes. The dimensionality of all images
or feature embeddings in the image classification task is the
same, which facilitates the application of the semantic scale
proposed in this paper. However, the non-fixed dimension-
ality of each instance in the field of object detection brings
new challenges, so we have to consider the effect of dimen-
sionality on the semantic scale, which is a direction worthy
of further study.


	. Introduction
	. Related Work (Appendix A)
	. The Geometry of Perceptual Manifold
	. Perceptual Manifold
	. The Volume of Perceptual Manifold
	. The Separation Degree of Perceptual Manifold
	. The Curvature of Perceptual Manifold

	. Learning How to Shape Perceptual Manifold
	. Learning Facilitates The Separation
	. Learning Reduces The Curvature
	. Curvature Imbalance and Model Bias

	. Curvature-Balanced Feature Learning
	. Design Principles of The Proposed Approach
	. Curvature Regularization (CR)
	. Dynamic Curvature Regularization (DCR)

	. Experiments
	. Datasets and Implementation Details
	. Effect of 
	. Experiments on Long-Tailed Datasets
	Evaluation on CIFAR-10/100-LT
	Evaluation on ImageNet-LT and iNaturalist2018

	. Experiments on Non-Long-Tailed Datasets
	. Curvature Regularization Reduces Model Bias

	. Conclusion

