
Supplementary Material of “DiGeo”

1. Approach
1.1. Simplex ETF & Neural Collapse

The neural collapse (NC) phenomenon is revealed by [11] in the fully-supervised learning, i.e., an extremely simple
mathematical structure on the last-layer features. In particular, when the model is well-trained on a balanced dataset, the
Nf features {xc,i}

Nf

i=1 for class c will converge to its class mean x̄c = 1
Nf

∑
i xc,i where the class means {x̄c}c∈C together

the class centers {wc}c∈C will collapse to the simplex equiangular tight frame (Simplex ETF). Meanwhile, though the
optimization objective of class mean and class centers (classifier weights) are not exactly the same, the class mean and class
centers will still converge to each other.
Simplex Equiangular Tight Frame denotes a collection of vectors W∗ = {w′i}

Nc
i=1 ∈ Rd×Nc that

W∗ =

√
NC

NC − 1
U
(
INC
− 1

Nc
1NC

1T
NC

)
(1)

where each vector w′i ∈ Rd and ‖w′i‖2 = 1 for 1 ≤ i ≤ NC , INC
∈ RNC×NC and 1NC

∈ RNC denote the identity matrix
and all-ones vector respectively. The rotation matrix U ∈ Rd×NC satisfies UTU = INC

and d ≥ NC − 1. In this way, for
all vectors in a simplex ETF, their pair-wise angles are identical, i.e.,

w′Ti w′j = − 1

NC − 1
,∀i, j ∈ [1, NC ] and i 6= j, (2)

where the angle arccos(− 1
NC−1 ) shown in [11] ans is the maximal equiangular angle of NC vectors in the feature space.

Algorithm 1 Iterative algorithm for obtaining Simplex ETF)

Input: Number of classes NC , feat. dim d where d ≤ NC − 1 maximum iterations T , stop threshold δ, learning rate τ .
1: Initialization:

Randomly initialize W = np.random.normal(size=(NC , d)),
2: for t = 1 to T

l2-normalize the vector w in each row W = normalize(W ),
calculate pair-wise l2 distance Winner ∈ RNC×NC and set diagonal value as max infinity
calculate minimum distance for each class (except for the diagonal value) idx = np.argmin(Winner, axis = 1)
calculate objective funcdtion obj = np.sum(Winner[range(NC), idx])
calculate gradient grad = (W −W [nnindex, :]) ∗ 2
update the weight W ′ = W + grad ∗ τ
l2-normalize the vector w′ in each row W ′ = normalize(W ′),
update the weight W ′ = W ,
if obj < τ :

Early stop, set T as t
end for

Output: X (T+1)

Note that the equation in Eq. 1 is a closed-form for obtaining an ETF but it is only used when d ≤ NC . When d = NC +1,
we can then use an iterative algorithm to obtain the ETF. Specifically, we randomly initialize the values in W and use the
Eq.1 in the main paper to update the weight values. We provide the python-stype pseudo-code below. Note, since we want to
maximize the objective function, we apply + in the weight updating part.
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2. Experiment
2.1. Implementation Details

The Faster-RCNN system we are using consists of a ResNet-101 feature backbone, a RPN network, and a detection
module. The detection module is used to extract features for each region proposal, a linear classifier and a regression for
localization. As mentioned in the main paper, since penultimate layer in the classification module is followed by a ReLU
activation [3], the proposal features are constrained to have non-negative entries and its distance to weights in W ∗ are lower-
bounded, and we thus add a linear layer (projector) on top of the extractor of proposal feature. Meanwhile, as highlighted in
Sec. 5.3 in the main paper, we do not need to pretrained the detector on the base set, but directly training everything from
scratch, however, we will still use the ImageNet-pretrained model to initialize the feature extractor.

The dimension of proposal feature in Faster-RCNN is d = 1024 by default. As such, for experiments on MSCOCO and
Pascao VOC, we set the projector with the same input and output dimension. However, for experiments on LVIS, since it has
1230 classes in v0.5 and 1203 classes in v1.0, we set the output dimension of projector as 1280.

During distillation, as we mainly focus on the learning of detector. As such, we fix the ResNet-101 feature backbone and
the RPN network, and only distill the detection module. Also, during distillation, we do not apply any distillation strategy on
the layer for localization. Then, we first use the fixed margin − log(pc) in the loss and train the whole network. Then, during
distillation, to fasten the training process, we can choose to also initialize the detector module with the pretrained teacher
model.

RFS implementation details. We directly call the “RepeatFactorTrainingSample” as the training sampler function and
send rfs parameter (0.01 for VOC & COOC and 0.001 for LVIS) to the variable “SAMPLER TRAIN”

2.2. Full experiment on Pascao VOC

We summarize the performance of novel detection in Table M1. Comparing with baseline TFA, over all 15 experiments on
PASCAL VOC, the Prior baseline has already outperformed TFA by 3.6 gain in nAP50 and 1.9 gain in bAP50 on average. By
performing the self-distillation to adjust margins for all classes C adaptively, our full approach DiGeo can further improve the
detection score, e.g., comparable nAP50 with MPSR [19] but maintaining high base detection precision (81.3 Vs. 68.1). As
reported in Table 2 in the main paper, comparing with Retentive RCNN [1], a state-of-the-art (SOTA) approach in GFSOD,
besides maintaining precise base detection, our approach also improves the novel detection score (43.9 Vs. 41.1). Meanwhile,
the superior performance by Retentive RCNN on split 1 when K is {1, 2} cannot be generalized to other splits. However, our
approach achieves stable and consistent gain. Meanwhile, when more training data are provided, i.e., K ≥ 3, the advantage
of our DiGeo is better explored and achieve 3.76 nAP50 gain on average.

Table M1. Performance comparison of nAP50 on the PASCAL VOC dataset.

Approach
split 1 split 2 split 3

Avg.
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

FRCN-ft-full [21]∗ 15.2 20.3 29 25.5 28.7 13.4 20.6 28.6 32.4 38.8 19.6 20.8 28.7 42.2 42.1 27.1
TFA w/ fc [18] 36.8 29.1 43.6 55.7 57 18.2 29 33.4 35.5 39.0 27.7 33.6 42.5 48.7 50.2 38.7
TFA w/ cos [18] 39.8 36.1 44.7 55.7 56 23.5 26.9 34.1 35.1 39.1 30.8 34.8 42.8 49.5 49.8 39.9
MPSR [19] 42.8 43.6 48.4 55.3 61.2 29.8 28.1 41.6 43.2 47.0 35.9 40.0 43.7 48.9 51.3 44.0
Meta RCNN [21]∗ 16.8 20.1 20.3 38.2 43.7 7.7 12.0 14.9 21.9 31.1 9.2 13.9 26.2 29.2 36.2 22.8
FSRW [12] 14.8 15.5 26.7 33.9 47.2 15.7 15.3 22.7 30.1 39.2 19.2 21.7 25.7 40.6 41.3 27.3
FsDetView [20]∗ 25.4 20.4 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 32.4 19.0 29.8 33.2 39.8 29.2
Retentive R-CNN [1] 42.4 45.8 45.9 53.7 56.1 21.7 27.8 35.2 37.0 40.3 30.2 37.6 43.0 49.7 50.1 41.1
Prior 35.8 37.9 45.7 56.4 61.0 22.7 28.4 39.8 41.4 48.8 30.8 36.4 45.4 52.4 53.8 42.4
DiGeo 37.9 39.4 48.5 58.6 61.5 26.6 28.9 41.9 42.1 49.1 30.4 40.1 46.9 52.7 54.7 44.0
∗: results reported by Retentive R-CNN [1] and TFA [18].†: Model ensembling. Full tables can be found in Supp.

2.3. Long-Tail Object Detection

LVIS [4] is derived from COCO17 [9] and has two versions of annotations. The version v1.0 contains ∼1.3M training
instances of 1203 classes while the version v0.5 has ∼0.7M training instances of 1230 classes. The one reported in the main
paper is of v0.5. According to the number of training instances, the classes are divided into three groups, rare (1-10), common
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Table 2. Detailed Performance of MS COCO dataset.

Approach
10-shot 30-shot

AP bAP nAP nAP50 nAP75 nAPs nAPm nAPl AP bAP nAP nAP50 nAP75 nAPs nAPm nAPl
Prior 31.5 38.8 9.6 17.8 9.2 3.8 9.3 16.5 32.5 38.8 13.6 24.3 13.3 4.7 11.9 21.4
DiGeo 32.0 39.2 10.3 18.7 9.9 4.5 10.0 16.8 33.1 39.4 14.2 26.2 14.8 5.3 13.1 23.9

(11-100), and frequent (>100). Following [18], apart from the precision for all classes (AP) on the validation set, we also
report the precision for each group, i.e., APr, APc, and APf . Meanwhile, following a common setup, we try two different
backbones ResNet50 and ResNet101.

Here we try two different baseline, TFA and ACSL. We do acknowledge other related research on LVIS such as EFL [6]
and LOCE [2]. However, these approaches are developed on Mask-RCNN framework, i.e., both object detection and object
segmentation are trained. Since object segmentation introduces extra supervision signals, while our focus is main on object
detection, we thus choose ACSL as the baseline.

Comparing with ACSL, TFA also focus on object detection only but ACSL 1) applies a two step training strategy and 2)
use the model pretrained on MSCOCO as initialization. In contrast, TFA only uses ImageNet-pretrained model to initialize
the feature extractor. Meanwhile, it follow the configuration regarding learning rate and training epochs in the 1x Baseline
but apply it on base training stage. As such, we consider both of these two setups. As such, we follow the training steps
ACSL and use model pre-trained on MS COCO as initialization. From the Table M2, DiGeo can achieve consistent gain on
two cases.

Table M2. Performance comparison of LVIS dataset (Full Table)

Approach ResNet-50 ResNet-101
AP APr APc Apf AP APr APc Apf

V0.5
1x Baseline 22.7 10.6 22.0 28.0 24.5 13.1 23.9 30.0
TFA w/ fc [18] 24.1 14.9 23.9 27.9 - - - -
TFA w/ cos [18] 24.4 16.9 24.3 27.7 - - - -
DiGeo 24.9 17.3 24.6 28.5 26.8 18.5 26.8 30.1
RFS [4] 24.9 14.4 24.5 29.5 - - - -
Focal Loss [8] 22.0 10.5 22.4 25.9 - - - -
EQL [15] 25.1 11.9 26.0 29.1 26.1 11.5 27.1 30.5
BAGS [7] 26.0 17.7 25.8 29.5 26.4 16.8 25.8 30.9
ACSL [17] 26.4 18.6 26.4 29.4 27.5 19.3 27.6 30.7
DiGeo 26.7 18.9 27.0 29.0 27.9 19.5 28.0 31.0

V1.0
1x Baseline 19.3 6.4 17.1 27.6 21.1 10.1 21.7 25.8
DiGeo 22.5 12.4 20.6 26.8 24.4 16.6 22.8 28.0

The configuration of 1x Baseline can be found in the TFA official repo.

3. Discussion
3.1. Decoupling localization from classification.

Consistent with the observation in [11], by enhancing inter-class separation and intra-class compactness, the detection
scores are improved. However, the features for localization should still be class-independent (e.g., bus and elephant has
similar shape). From the implementation details, a projector is set where its input & output are used for localization &
classification separately. Then, sharing the features for localization and classification will lead to slight performance drop (i.e.,
AP50 74.0, nAP50 55.6). As such, it is important to decouple the features for localization and classification and employing a
simple linear projector has been shown to be userful.
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Table M3. Ablation study of Background Design.

Idx N− Fixed AP50 bAP50 nAP50

1 1 X 74.9 81.0 56.4
2 5 X 73.5 81.3 50.2
3 1 74.9 81.0 56.4
4 5 74.9 80.9 56.7
5 10 74.9 80.9 57.0
6 20 74.6 81.1 55.2

3.2. Design of Background class

An object detector should reject the background and not recognize it as any foreground object. As such, a background
class c− is set as a placeholder and is trained to have high similarity with background proposals. Different from foreground
objects, as background proposals can be diverse, we considered different strategies in designing the background class center.

We first choose to separate the design of Wb ∪Wn and wc− , i.e., deriving fixed offline weights for Cb ∪ Cn only but learn
the weight wc− . Then, we follow the open-set strategy [22] to set multiple background centers W− = {w(i)

c−}
N−
i=1 where

N− is the number of background centers where the maximum logit, i.e., max1≤i≤N−(xTw
(i)
c−), is used in classification. As

compared in Table M3, having more learnable class centers can introduce trivial performance improvement but will drop
clearly when N− is too large. However, when we directly set the classifier for the all classes ,i.e., Wn ∪Wb ∪W− as ETF ,
the performance drops when N− > 1.

In practice, we observe all learnable negative weights W− are trained to separate from the Wb ∪Wn where the weights
in W− are still close to each other such that the diversity of background features are preserved indirectly. Instead, having all
negative weights maximally separated from each other assume background features is very diverse and make the model hard
to learn. As such, we choose to set N− = 1 and adjust margins through self-distillation to maintain the diversity properly.

3.3. More Visualization

As shown in Fig. M1, we visualize the classifier centers by their pair-wise cosine similarity when they are learned from
scratch. Fig. M1(a) is the same as the Fig. 3(b) in the main paper but the background class center is also included (the
rightmost and the bottom one). We can then see that when we have both base and novel annotation in the train set, the class
centers can be trained to distance from all of the background classes. However, when we only use novel classes during the
adaptation stage (Fig. M1(b)), the negative class center can be close to the novel class centers. Meanwhile, when we use the
full set for training from scratch, we can see that the applying either RFS or adding margins can help with separating the
novel class centers from the background class centers, while adding margins is more important.

The foreground class names (sorted by decreasing order) are person, chair, car, bottle, dog, potted plant, cat, boat, sheep,
aeroplane, bicycle, tv monitor, horse, dining table, train, motorbike, cow, bus, bird, sofa.

(b) Novel only (c) linear+margin (d) linear+RFS(a) Balanced

Figure M1. Visualization classifier centers.
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4. Comparison with related work
In this section, we provide in-detail comparison with a few representation works to highlight our motivation and contribu-

tion. All of the approached listed below have been briefly mentioned in the sections of Related Work and Experiment.

CME [5] similarly employs a margin equilibrium strategy in the few-shot finetuning. The determination of the margin
value is based on the degree of feature disturbance which is measured by the scale of gradient among augmented samples.
Meanwhile, CME is motivated by the trade off between margins of base classes and the variance of novel classes.

However, we have used the geometric property of Simplex ETF to maximally separate the feature clusters for all classes.
In this way, we decouple the learning for inter-class separation and intra-class compactness and only tighten the feature
cluster to the corresponding class centers to reach a balanced distribution. As such, we can learn discriminative features for
all of the classes even on an extremely imbalanced dataset.

In addition, CME is still trained on the balanced datasetD−b ∪Dn and the so-called margin equilibrium is realized when the
model is trained on a balanced set. Thus, CME may still forget the base knowledge. Instead, our margins are for all classes
based on the prior of instance distribution and our approach is orthogonal to CME. Furthermore, the margin estimation
strategy in CME can be used as an alternative of our self-distillation in margin adjustment.

Negative margin on few-shot classification is studied in [10] and reveals the trade-off of classification accuracy between
base recognition and novel recognition. Namely, for a feature extractor pre-trained on base classes, if the model achieves
better test accuracy on the base classification, the adaptation accuracy towards classification accuracy is then minimized. As
such, a comprehensive study is provided in [10].

In contrast, we focus on few-shot object detection and aims to improve the few-shot adaptation efficiency without scarify-
ing the performance of base detection. We always add positive class-specific margins to all classes where the margin values
are adaptively learned during network training.

LOCE [2] is applied on long-tail object detection, which is a more general case of generalized few-shot object detection
(i.e., in GFSOD, the imbalance between base set and novel set is more significant and thus more challenging). A common
problems discussed in LOCE and our paper is that the instance distribution of classes cannot be directly used to estimate the
margins.

As such, LOCE discards the prior and introduce the Equilibrium loss to use the mean classification score to determine
the margin. In addition, they proposed a complex memory-augmented feature sampling to facilitate the network training. In
contrast, we clearly discuss and decouple the training objective for inter-class separation and intra-class compactness.

We consider the distribution of classifier weights in conventional training and use ETF as a fixed classifier. In this case,
we used the assigned weights to guide the separation of feature clusters between different classes, and then apply different
margins to push the features to the assigned centers. As we apply margins to facilitate the balanced distribution, we can use
the instance distribution as prior and use a simple knowledge distillation to adjust the margins and facilitate training.

Margin modification techniques such as BALMS [13] and Seesaw loss [16] has been proposed. Specifically, BALMS
considers the boundary shifting problem in long-tailed classification/segmentation and present a meta-sampling strategy to
re-estiamte the boundary indicated in the Softmax function. Seasaw loss defines a compensation factor in vanilla cross
entropy loss to balance the error for different classes. In both case, they in effect count on the real-time (online) distribution
of selected samples during the training and then adjust the loss. Instead, we focus on the inter-class separation and intra-
class compactness to guide the training of features, i.e., re-arranging the feature distribution from the perspective of feature
geometry. In addition, the margin modification techniques can be used as an alternative of our margin adjustment strategy for
the intra-class compactness only.

Connection with FSCE In FSCE [14], the authors has provided a strong baseline by adjusting the hyper-parameters in
RPN and proposal selection. We have tried to apply it in our framework but the performance drops. As such, we still follow
the hyper-paramter setting in TFA. Meanwhile, it also demonstrates that the observation in FSCE is only available in the
two-step based training strategy such as TFA, and cannot be generalized to a universal case.

Furthermore, FSCE proposed a contrastive encoding approach and treats the proposals as augmentation of the same
instance. However, we have also add the contrastive loss in our approach and observed that it may help improve the nove
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detection slightly but hurt the base detection significantly. We think the reason is that the data distribution is extremely
imbalanced and and the contrastive loss cannot help.
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