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1. Supplementary Material

1.1. Pesudo Code

The pseudo-code for our suggested inverting-by-

decoupling training scheme is appended in Algo. 1.

1.2. Identity code interpolation

In this paper, we use a motion controller C and

decoupling-by-inverting strategy to disentangle the latent

code of face generator to identity code wid and motion code

wx. In this section, we examine the disentanglement by per-

forming the task of identity interpolation. The interpolated

identity is generated by:

w
′

id = αwid a + (1− α)wid b (1)

where wid a and wid b are the identity codes estimated from

two source reference image using decoupling-by-inverting

strategy. The interpolated latent code w
′

id is then com-

bined with any motion and generate animations. The ani-

mation result in shown in Fig. 1. It shows that our model

can animate consistent motion with smooth-varying iden-

tity attributes. And it validates that our method achieves the

disentanglement of motion and identity in the latent space

of pre-trained face generator. The animation result is also

appended in the supplementary video.

1.3. More Qualitative Comparison

Multi-view dataset. We show more qualitative compar-

ison result on the multi-view stereo dataset Multiface [6] in

Fig. 2. To further compare the robustness against the pose

variation, we choose an overhead view as the single refer-

ence.

*Equal contribution.
†Corresponding author.

Algorithm 1 Training Scheme of Decoupling-by-Inverting

Input: Talking Face Dataset D,

3D face animator G(·, ·; Θ) = Geg(·+ C(·; Θc); Θeg)
where Θ = Θeg ∪Θc

1 Θc ← random initialization

for i← 1 to T do
/* collect source and target data point */

2 V ← random video clip sampled from D

Is,xs,ps ← data of random frame sampled from V

Id,xd,pd ← data of random frame sampled from V

3 wid ← wavg // initialize wid using average

4 θc ← Θc // initialize θc using EMA weights

5 θ ← Θeg ∪ θc // assemble G with trainable θc

6 for n← 1 to Nid +Nmo do
/* calculate optimization objectives */

7 Ls ← L(Is,R(G(wid,xs; θ),ps))
8 Ld ← L(Id,R(G(wid,xd; θ),pd))
9 if n < Nid then

/* optimize identity code */

10 Update wid using ∇wid
(Ls + Ld)

11 else
/* train motion calibration */

12 Update θc using ∇θc(Ls + Ld)

13 end

14 end

15 Calculate Ls, Lt using line.7, line.8

16 Finetune Θeg on Ls + Lt

17 Θca ← βΘc + (1− β)θc // Update EMA weights

18 end

Monocular dataset. To evaluate the 3D consistency in

monocular talking dataset, we change the pose coefficients

to be rotating while keeping the expression coefficients in

sync with the driving frames, as shown in Fig. 3.

From both comparisons, we observe PIRenderer [4] and

StyleHEAT [8] suffer from drastic unnatural image distor-
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Figure 1. The interpolation results of identity code. Our model can generate smooth-varying identity attribute beyond motion control.

tion, while our methods can maintain the multi-view con-

sistency and depict natural motion on the expression; com-

pared to the 3D method of HeadNeRF [3], we achieve a

more faithful reconstruction of the subject on the skin color

and torso. For more detail, please refer to the supplemen-

tary video.

CSIM AED APD AKD FID

wx ∈ W 0.719 3.352 0.453 4.783 104.6

w/o code book 0.662 3.342 0.457 4.974 103.2

Ours 0.694 2.850 0.405 4.307 101.8

Table 1. Ablation study on the controller architecture. Experi-

ments are conducted on the cross-identity reenactment.

1.4. The Network Architecture of the Controller

We proceed to describe the controller architecture in this

section. Fig. 4 shows the details of the motion controller

C. We input the window of adjacent 27 frames of expres-

sion and pose coefficients, they form up the motion signal

of size 73×27. We use three 1D convolution layers, noted

as FT to compress the noises in the sequential 3DMM co-

efficients. After that, a five-layer MLP is implemented to

transform the feature into the magnitudes of 20 orthogonal

bases of size 512 in the code book. We calculate 20×14 of

such magnitudes, by first outputting 20×15 scalars and then

adding 20 of them to the others. Then the 20×14 scalars are

multiplied with the orthogonal bases in the code book D and

transformed to the motion code of size 14×512 . Here 14 is

the maximum number of latent codes w ∈ W as input to the

face generator G [1]. The 14×512 latent features form up

theW+ space [7]. In our implementation, it is formulated

as the summation of the identity code wid and the motion

code wx.

we conduct experiments to evaluate the effectiveness of

the proposed controller architecture. One ablation model

is constructed by reducing the number of output scalars to

1×20. It is multiplied with the code book D to make up



Figure 2. 3D Consistency on multi-view dataset. We demonstrate additional visualization comparison on the Multiface dataset [6], with

more drastic camera view variation. All methods use the source frame to extract the identity feature, then extract 3DMM coefficients of

pose and expression from the driving frame to generate the talking face. This subject is not included in the training set of any methods.

Figure 3. 3D Consistency on monocular dataset. We demonstrate additional visualization comparison on the HDTF dataset [9], with

more drastic camera view variation. All methods use the source frame to extract the identity feature, then use the coefficients of pose and

expression as visualized by the face meshes to generate talking faces. This subject is not included in the training set of any methods.
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Figure 4. Controller architecture. We show the details of the ar-

chitecture of C in (a) and the sub-module FT in (b). The controller

takes as input 3DMM coefficients and output motion code in W
+

space [7].

Motion ↑ Identity ↑

FOMM [5] 4.1 5.3

PIRender [4] 3.5 4.3

StyleHEAT [8] 7.4 5.7

HeadNeRF [3] 4.6 3.8

Ours 9.0 8.5

Table 2. User study on the animation quaility.

the single motion code of size 1×512, it is further repeated

14 times to fit the required shape of 14×512. This model

is written as wx ∈ W in Table. 1. In another ablation

model, we replace the code book with vanilla 20×512 lin-

ear weights which can also transform every 20 scalars to

512-dimensional latent code. From Table. 1, we observe

the performance deterioration on both ablation models on

the motion controllability, which is evaluated by AED, APD

and AKD, and also on the image quality as quantified by

FID. Even though representing motion code in W facili-

tates higher identity consistency as measured by CSIM, it

neglects the fact that each of the 14 latent codes contributes

differently to the motion deformation, as is testified in 2D

GANs [2], therefore the motion controllability is reduced.

1.5. User Study

To assess the quality of the animation, we conduct a user

study. We sent the results animated by our method and base-

lines to 20 people (the students in the university). Users are

asked to evaluate the animation based on 1) motion that is

in sync with driving videos and, and 2) identity similarity

compared with the source portrait. Their ratings are aver-

aged, scaled to a maximum of 10, and shown in Table. 2.

Our method is the most desired in motion controllability

and identity consistency.
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