
Supplementary Material

1. Implementation Details

1.1. Network Architecture

ResNet10 [7] is the backbone of our ProD. The input im-
age size is 3 × 224 × 224. The output of ResNet10 before
the classification head serves as a backbone feature, whose
size is 7 × 7 × 512 and is reshaped into 49 × 512 (49 fea-
ture tokens) later to be concatenated with the prompts. The
architecture of the transformer layers following the back-
bone is the same as the transformer unit in [4] (standard ViT
transformer unit) with one trasnformer layer and one MLP
layer. The size of the DS prompt and DG prompts are set as
5, and their embedding dimensions are set as 512, the same
as the backbone feature. Concatenated with the prompts,
the shape of the input for the transformer layers is 59×512.
The hidden embedding size for the transformer is 512, and
the number of transformer heads is 8. After the transformer
layer, the size of the output vector is 59× 512. Finally, the
output of DS and DG prompts (both with size 5× 512) are
averaged respectively to classify the image.

1.2. Multi-domain Training Scheme

We use miniImageNet [11] as our base source dataset
since it contains images of immense variety. Four fine-
grained cross-domain datasets, including CUB [1], Cars [8],
Plantae [12] and Places [13], are selected as other source
datasets or target dataset. When one of the four fine-grained
cross-domain datasets serves as a target domain dataset for
inference, the other three serve as source domain datasets
for training.

In each training batch, half of the samples are from the
base dataset miniImageNet and another half from a cross-
domain dataset. Thus, different mini-batch contains images
from a different domain, and the three-domain from the four
datasets (CUB, Cars, Plantae, Places) serve as the source
domain of the mini-batch in turn. To be compatible with
the DS prompt, ”2k” samples are selected in each training
batch, where ”k” is the number of categories in a mini-
batch. For each category, two samples are selected. For
instance, when the batch size is 64, we have k = 32. When
inference, only one domain other than the three domains se-
lected as the source is sampled for support and query sets.

1.3. Evaluation Protocol

Following [2, 5], we evaluate our model by sampling
600 independent 5-way few-shot classifications on the four
cross-domain datasets. In each sampled test, K images
from 5 novel categories are selected as a support set whose
labels are available for training or fine-tuning. 15 images
from the 5 novel categories are selected as a query set whose
labels are not available and cannot be used to train or fine-
tune the model. Following the standard setting [2,5], we let
K = 1, 5. The last linear classification head is re-trained
from scratch based on the support set, and the rest param-
eters are frozen when inference. Then the model perfor-
mance is evaluated on the query set with all the parameters
frozen. For each independent test, the linear classification
head is re-trained. Statistic information of query images is
only used for batch normalization [2,5]. The model is eval-
uated 600 times in each experiment, and the average accu-
racy with a 95% confidence interval, beginning with ±, is
reported as the model performance.

1.4. Default Hyper-parameters

The default hyper-parameters setting is shown in Tab.2.
The model is trained with a batch size of 64 for 500 epochs.
The loss weight parameter α is set as 1, β is set as 1, and
the domain center momentum update rate λ is set as 0.9.
Transformer depth is set as 2, and both DS and DG prompt
sizes are 5. The model is optimized with adaptive moment
estimation (ADAM), with a learning rate of 10−2 and mo-
mentum of 0.9. When inference, the linear classifier is opti-
mized with stochastic gradient descent (SGD), with a learn-
ing rate of 10−2 and trained for 100 epochs.

2. Additional Experiments
2.1. Effect of the Multi-domain Training Scheme

We evaluate the effect of the multi-domain training
scheme described in Sec.1.2. The result is shown in Tab.1,
where methods with “−” are not trained with the multi-
domain training scheme. From the result, we see that the
multi-domain training scheme increases most methods’ ac-
curacy. It is worth noticing that for DSL, the performance
significantly drops after removing the scheme since the
model architecture is designed based on the multi-domain
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Methods CUB CARS Plantae Places

RelationNet 51.10± 0.62 38.26± 0.58 62.99± 0.62 46.01± 0.57
RelationNet− 51.02± 0.64 37.98± 0.59 62.78± 0.61 46.02± 0.56
MatchingNet 57.21± 0.63 36.98± 0.56 62.83± 0.62 43.68± 0.55
MatchingNet− 56.92± 0.61 36.94± 0.54 62.51± 0.64 43.51± 0.57
RelationNet+LFT 65.02± 0.55 43.51± 0.51 50.48± 0.46 67.34± 0.52
MatchingNet+LFT 61.44± 0.56 43.12± 0.52 48.49± 0.51 65.09± 0.48
RelationNet+ATA 59.42± 0.48 42.99± 0.42 45.51± 0.51 67.10± 0.41
NSAE [10] 68.17± 0.54 54.77± 0.56 59.51± 0.55 70.93± 0.54
DSL− 63.76± 0.60 51.21± 0.40 53.27± 0.49 66.12± 0.78
DSL 73.57± 0.65 58.53± 0.73 62.10± 0.75 74.10± 0.72

Baseline− 70.98± 0.76 50.63± 0.72 58.25± 0.69 67.01± 0.57
Baseline 72.32± 0.77 53.17± 0.71 60.05± 0.69 69.13± 0.60
ProD− 78.01± 0.79 57.22± 0.63 63.62± 0.68 72.43± 0.63
ProD 79.19± 0.59 59.49± 0.68 65.82± 0.65 75.00± 0.72

Table 1. Comparison with the state of the arts on 5-way 5-shot task with/ without multi-domain training scheme. “−” means the multi-
domain training scheme is removed from the corresponding method.

parameter value

α 1
β 1
λ 0.9
transformer head 8
transformer hidden embedding 512
transformer depth 2
learning rate train 10−2

learning rate inference 10−2

training batch size 64
training epoch 500
inference re-train epoch 100

Table 2. Default hyper-parameters setting.

training scheme.
In ProD, removing the multi-domain training scheme

prevents the DS prompt from learning effective domain-
specific knowledge and thus causes the accuracy decline.
For instance, on the CUB, the 5-way 5-shot accuracy drops
by −1.18%.

2.2. DS Prompt Size on 10-way 5-shot Test

We test different DS prompt sizes for 10-way 5-shot test.
The result is shown in Fig.1. We draw two following obser-
vations:

First, when the DS prompt size increases, the achieved
accuracy undergoes a sharp increase and a slight decrease.
The reason is twofold: 1) the small Ds prompt cannot in-
clude enough sample features to present a novel domain. 2)
5 samples are enough to represent a domain under a 10-way
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Figure 1. Evaluation of DS prompt sizes for 10-way 5-shot test on
CUB.

Weight (α) CUB
1-shot 5-shot

0.01 53.12± 0.72 78.75± 0.69
0.1 53.79± 0.67 79.03± 0.61
1 53.97± 0.71 79.19± 0.63
10 52.87± 0.73 78.54± 0.70

Table 3. Evaluation of different weights for neutralizing loss.

test, indicating that the prompt size does not have to be sig-
nificantly increased with the category number C.

Second, the 10-way test result is lower than the 5-way
test since the 10-way task is harder. For each category, we
have the same amount of support samples to train the net-
work, but the category number C is increased to 10.



Methods ChestX ISIC EuroSAT CropDisease

Transductive Ft [6] 26.79 49.68 81.76 90.64
ConFeSS [3] 27.09 48.85 84.65 88.88
RDC-FT [9]− 25.48 49.06 84.67 93.55
ProD 28.79 50.57 85.09 90.41

Table 4. Comparison with the state of the arts on 5-way 5-shot task on newly proposed datasets.

2.3. ProD on New Datasets

As shown in Tab.4, ProD surpasses several newly pro-
posed methods by a clear margin on ChestX, ISIC, and Eu-
roSAT datasets.

2.4. Weight of Neutralizing Loss

We test different weight for neutralizing loss: 0.01, 0.1,
1 and 10 in this section. The result is shown in Table 3.
The result shows that when the weight is too small, the
domain bias within the DG prompt cannot be properly re-
moved. When the weight is too high, the discriminative of
the DG prompt declines dramatically. Thus, for all the other
experiments, we set the weight α as 1.
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