
Supplementary Material for Solving Oscillation Problem in Post-Training
Quantization Through a Theoretical Perspective

1. Proof of Theorem 1

Theorem 1. Given a pre-trained model and input data. If
two adjacent modules are equivalent, we have,

L(Wi, Xi) ≤ L(Wi+1, Xi+1). (1)

Proof. When two adjacent equivalent modules contain only
one convolutional layer, that is,
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Where we transform the tensor convolution into a ma-
trix multiplication for simplicity. This transform is com-
mon in the practical implementation of convolution and is
usually accompanied by the General Matrix Multiplication
(GEMM) for the practical speedup [1]. Therefore,
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where ∆W and ∆X are the quantization errors of W and
X . We ignore the higher order term ∆W∆X of the quanti-
zation error. Then,
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where w

(m)
i+1 is the m-th row vector of W , x(n)

i+1 is the n-
th column vector of X , and others as well. Since the pre-
trained model and the input are given, w(m)

i+1 and x
(n)
i+1 are

constant vectors in the PTQ optimization process, so that,
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Since the two adjacent modules are equivalent and each
module contains a batchnorm layer [3], we thus consider
the full precision weights and activations of the two mod-
ules to be identically distributed, i.e.,
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Meanwhile, due to the accumulative effect of quantification
errors, we have,
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Therefore, Eq. 1 holds when the two modules contain one
convolutional layer. Subsequently, suppose that Eq. 1 holds
when the module contains n convolutional layers, we have,
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Our supposition is equivalently converted to,
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When the module contains n+ 1 convolutional layers,
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Similar to the derivation of Eqs. 4-7, we can obtain that
Eq. 1 also holds when the module contains n + 1 convo-
lutional layers. Therefore, by inductive reasoning, the The-
orem 1 is proved.

2. Proof of Corollary 1
Corollary 1. Suppose two adjacent modules be topologi-
cally homogeneous. If the module capacity of the later mod-
ule is large enough, the loss will decrease. Conversely, if the
latter module capacity is smaller than the former, then the
accumulation effect of quantization error is exacerbated.

Proof. We consider an extreme case, where the module is
equivalent to no quantization if the bit-width bi in the Mod-
Cap is taken to be 32 bits and the activation value is not
quantized. In this case, the quantization error of this module
is 0. Therefore, when the module capacity is large enough,
the quantization error of the module will converge to 0, i.e.,

lim
ModCap→m

∆W = lim
ModCap→m

∆X = 0, (12)
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Figure 1. Loss distribution of different algorithms on ResNet-
18. We ignore the reconstruction loss of the final block and the
fully connected layer. Convolutional layers within a block of the
block reconstruction algorithm share the reconstruction loss of that
block.

where m is the module capacity of the full precision mod-
ule. ∆W,∆X is the quantization error of the module
weights and activation. Therefore, for arbitrary ϵ > 0, there
exists a module capacity n such that L(Wi+1, Xi+1) < ϵ
when ModCap > n. Since ϵ is arbitrary, we take ϵ = ϵ1 <
L(Wi, Xi). Consequently, we have

L(Wi+1, Xi+1) < ϵ1 < L(Wi, Xi). (13)

Conversely, by Theorem 1, when the capacity of the later
module is the same as the earlier one, due to the accumula-
tive effect of the quantization error, we have

L(Wi, Xi) ≤ L(Wi+1, Xi+1). (14)

If the capacity of the later module is smaller than the earlier
one, the quantization error of the module will increase, i.e.,

lim
ModCap→0
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∆X = ζ, (15)

where ζ is the upper bound on the quantization error of the
module. Therefore, for arbitrary ϵ > 0, there exists a mod-
ule capacity n such that L′

(Wi+1, Xi+1) > ζ − ϵ when
ModCap < n. Since ϵ is arbitrary, we take ϵ = ϵ1 =
ζ − L(Wi+1, Xi+1). Consequently, we have

L
′
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(16)
Therefore, the corollary is proved.

3. Loss distribution of ResNet-18
In Fig. 1 we present the reconstruction loss distribution

of ResNet-18 quantized to 4/4 bit. AdaRound shows the



(a) ResNet-18

Methods Searching Time Top-1 Acc(%)

BRECQ 0 64.83
QDROP 0 65.56

ModCap MRECG 0 66.07
Loss MRECG 19.1 mins 66.30

(b) ResNet-50

Methods Searching Time Top-1 Acc(%)

BRECQ 0 70.06
QDROP 0 71.07

ModCap MRECG 0 71.65
Loss MRECG 60.9 mins 71.92

(c) MobileNetV2×0.5

Methods Searching Time Top-1 Acc(%)

BRECQ 0 29.79
QDROP 0 35.14

ModCap MRECG 0 38.02
Loss MRECG 39.5 mins 38.43

Table 1. Searching time of reconstruction granularity and Top-1
accuracy for different algorithms on ResNet-18, ResNet-50 and
MobileNetV2. All weights and activations are quantized to 3 bit.

most drastic loss oscillations. As a result, this causes a sharp
increase in reconstruction error due to irretrievable informa-
tion loss. The block reconstruction strategy of BRECQ mit-
igates the oscillations in AdaRound, but still shows small
oscillations within some layers. For example, oscillations
occur between the 4-th layer and 5-th layer. MRECG com-
pletely smoothes out the oscillations, allowing the recon-
struction loss of ResNet-18 to be smoothly incremented by
the accumulation of quantization errors.

4. MRECG searching time

The mixed reconstruction granularity based on the loss
metric requires a small portion of the data for model re-
construction to obtain the loss distribution. As shown in
Tab. 1, the searching time of Loss MRECG on ResNet-18,
ResNet-50 and MobileNetV2 are 19.1 mins, 60.9 mins and
39.5 mins, respectively. Loss MRECG achieves the global
optimum with a small time overhead. ModCap MRECG
does not require the PTQ reconstruction process and thus
it is more efficient. Meanwhile, the locally optimal Mod-
Cap MRECG also outperforms the previous SOTA method
and has a small performance degradation compared to the
global optimum.

Methods W/A Reg600M

Full Prec. 32/32 73.52

ZeroQ [2] 4/4 28.54
LAPQ [6] 4/4 57.71

AdaRound [5] 4/4 68.20
BRECQ∗ [4] 4/4 70.44
QDROP [9] 4/4 70.62

Ours+QDROP 4/4 71.22 (+0.60)

LAPQ [6] 2/4 0.17
AdaRound [5] 2/4 57.00
BRECQ∗ [4] 2/4 61.77
QDROP [9] 2/4 63.10

Ours+QDROP 2/4 65.16 (+2.06)

AdaRound∗ [5] 3/3 58.29
BRECQ∗ [4] 3/3 62.61
QDROP [9] 3/3 64.53

Ours+QDROP 3/3 66.08 (+1.55)

BRECQ∗ [4] 2/2 28.89
QDROP [9] 2/2 38.90

Ours+QDROP 2/2 43.67 (+4.77)

Table 2. A comparison of RegNet with the State-Of-The-Art
method. ”*” indicates that we reproduce the algorithm in a uni-
form experimental setup based on open-source code. W/A repre-
sents the weights and activations bit width, respectively. Under
different bit configurations, we show the comparison of our algo-
rithm with a wide range of PTQ methods on RegNet.

5. Classification accuracy of RegNet
We complement the performance of MRECG on Reg-

Net [8]. We quantize the Reg600M model to different bit
configurations. As shown in Tab. 2, MRECG achieves op-
timality for different bit configurations. Specifically, we
obtain 65.16% Top-1 accuracy on Reg600M with 2/4 bit,
which is 2.06% higher than QDROP.

6. Implementation details
For the hyper-parameters of the reconstruction, we keep

the same as in the previous approaches [4, 9]. Specifically,
the number of reconstruction iterations in each module is
20, 000, and we set a consistent linearly decreasing temper-
ature b, which ranges from 20 to 2. We apply a loss ratio
of 0.01 and 0.1 in ResNet and MobileNetV2, respectively,
to balance the reconstruction loss and rounding loss. In the
combination of MRECG and QDROP, we adopt 0.5 proba-
bility for each element to decide whether to quantize or re-
tain full precision as described in QDROP. Our pre-trained
models for ResNet-18, ResNet-50 and MobileNetV2 are
from the PyTorch library [7]. Our different scaled Mo-
bileNetV2 are obtained by our own training. The number



of joint optimization modules k is set to 2,4,7 in ResNet-
18, ResNet-50 and MobileNetV2, respectively.
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