
Supplementary Material of Symmetric Shape-Preserving Autoencoder for
Unsupervised Real Scene Point Cloud Completion

In the supplementary material, we first show more de-
tails about network, metric, and multi-category loss. Next,
we conduct more experiments including the robustness of
noises and the corrupted inputs, and the error bar of the
training experiments. Finally, more completion on real ob-
jects and more qualitative comparisons are given to show
the advantages of our USSPA.

1. More Details

1.1. Network Details

Inspired by PCN encoder [8], we design the structures
of the encoders ER, EA, and the point discriminator Dp

in our USSPA as shown in Figure 1. The parameter of the
weight-shared MLPs1 of our encoders are [3, 128, 256] and
[512, 512]. And the parameters of the weight-shared MLPs
of our point discriminator are [3, 128, 256] and [512, 256].
Besides, to get the probability, we also employ an MLP in
our point discriminator after extracting the global feature.
The parameter of this MLP is [256, 64, 64, 1].

The decoders DR, DA, Dsl and the feature discriminator
Df are MLPs with parameters [512, 512, 512, 1024, 1024,
1536], [512, 512, 512, 1024, 1024, 1536], [512, 128, 128,
2] and [512, 64, 64, 1] separately. The parameters of the
weight-shared MLPs of the upsampling refinement module
are [3, 256, 256, 256], [512, 256, 256, 256], [512, 256, 256,
256], respectively. The details of our upsampling operation
in our upsampling refinement module are shown in Figure
1 as we mentioned in our paper. For a point p with feature
f , the upsampling operation generates k points p0, p1, ...,
pk−1. The parameter of the MLP is [515, 512, 512, 12].

For multi-category data, the channel numbers of the out-
put layer in our discriminators are set to 11 = 10+1 where
10 is the category number and 1 represents the fake label
mentioned in our paper.

In practice, we alternately optimize the generator and the
discriminator of our USSPA.

1For a MLP, [c1, c2, ..., cn] means that there are n layers in MLP.
The input layer has c1 channels, the output layers have cn channels, and
c2, ..., cn−1 denote the channel numbers of hidden layers.
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Figure 1. Detailed structures of our encoders and point discrimi-
nator (yellow) and the upsampling operation (blue).

1.2. Metric Details

We employ pre-point L1 Chamfer Distance cdl1 and F-
score F 0.1%

score, F 1%
score to measure the difference between the

predicted point cloud and the referential ground truth. Fol-
lowing the definition in [1], the Chamfer Distance with L1-
norm between two point clouds P1 and P2 is calculated as:
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As mentioned in [2], the Chamfer Distance indicator
is sometimes misleading because of its sensitivity to out-
liers. We then further take advantage of F-score [2] to de-
liver more comprehensive evaluations. F-score is defined
as:

F d
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where P is precision:
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and R is recall:
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Both P and R take a parameter d to control the strictness.
Smaller d means a smaller neighborhood, which brings both
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lower precision and recall. As suggested, we set d at 0.01
and 0.001 separately.

1.3. Multi-Category Loss Details

Let Dp(PR0)i represents the probability that the predic-
tion PR0

belongs to the i-th category, and g denotes the
ground truth label of the artificial input point cloud PA. As
we mentioned in the paper, the label 0 denotes fake data
while the label l > 0 denotes real data belonging to cate-
gory l. Thus, for multi-category data with K categories, we
change the loss LF→R, LR and LF into:
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and
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respectively.

2. More Experiments
2.1. Robustness of Noises

We conduct an experiment by adding random shifts to
the points of input point clouds to evaluate the robust-
ness of the noises of our method. For an input point
cloud PR ∈ Mn0×3, we randomly generate a shift matrix
xshift ∈ [−s, s]n0×3 through uniform sampling, where s
indicates the noise scale. Then, we add the shift matrix to
the input point cloud by PR ← PR + xshift to randomly
shift the points. The Chamfer Distance cdl1 and F-Score
F 0.01%
score of our prediction on chair category with different

noise scales are shown in Figure 2. The results show the
robustness of the noises of our method when the noise scale
s is lower than 0.1.

2.2. Robustness of Corrupted Inputs

To evaluate the robustness of corrupted inputs and verify
the necessity of our symmetry learning module, we remove
the points of input point cloud along the X-axis as shown in
figure 3. The completion results are nearly the same with
different keeping ratios of input point clouds. These re-
sults show the robustness of corrupted inputs of our method
which benefits from our carefully designed symmetry learn-
ing module. Our symmetry learning module can generate
the symmetrical point cloud of input which fully leverages
the existing information.

Noise Scale 𝑠𝑠

Figure 2. The Chamfer Distance cdl1 and F-Score F 0.01%
score of our

prediction on chair category with different noise scales
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Figure 3. The completion results (bottom) of the inputs (top) with
different keeping ratios (100%, 75%, 50%, 25%).

2.3. Error Bar of Training Experiments

The error bars of our training experiments on 10 cate-
gories are shown in Figure 4, which shows that the perfor-
mance of our USSPA is stable and repeatable.

3. More Completion on Real Object

More completion on real objects by Unpaired [6],
ShapeInv [9], and our USSPA are shown in Figure 5. The
results of the TV on the first line show that our prediction is
more uniform with the vertical right boundary. And the re-
sults of the table on the second line show that our prediction
is cleaner with fewer outliers. More comparisons indicate
the superiority and generalization ability of our USSPA on
real objects.
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Figure 4. The box image of our method in terms of the Chamfer
Distance cdl1, where diamonds indicate the outliers.

Real Object Input Unpaired ShapeInv Ours 

Figure 5. Completion on real objects (TV(top) and table(bottom))
by Unpaired [6], ShapeInv [9] and our USSPA.

4. More Qualitative Comparisons

More qualitative comparisons of our USSPA and other
works [3–7, 9] are shown in Figures 6, 7 and 8.
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Figure 6. Visualization of completion results by our USSPA and other works. From top to bottom: chair, table, bookshelf, and TV.
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Figure 7. Visualization of completion results by our USSPA and other works. From top to bottom: bed, cabinet, lamp, and sofa.
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Figure 8. Visualization of completion results by our USSPA and other works. From top to bottom: trash bin, and tub.
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