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1. Network and Training
We evaluate our level set alignment loss with six

baselines including NeuralPull [3], IGR [2], SIREN [4],
NeuS [6] and MonoSDF [7]. For fair comparisons, we do
not change the networks of baselines, and follow the same
training procedure and parameter settings. We train each
baseline method using our loss as an additional term in the
objective function.

2. Query Sampling
In the experiments we learn implicit functions from point

clouds, we leverage the same sampling method as the base-
line method. For example, we follow the sampling in-
troduced by NeuralPull [3] to sample queries around each
point on the point cloud. We use Gaussian distribution with
each point as its center and set the standard deviation as the
distance to the 51th nearest neighbor in the point cloud. For
IGR [2] and SIREN [4], we follow their sampling methods.

3. More Visualization
We visualize our loss on different level sets in Fig. 1.

We show the level set alignment loss at vertices on each
level set, and map the loss into color. We use the same
set of level sets from our results, but calculate the loss in
the fields learned with or without our loss respectively. We
can see that NeuralPull [3] learns a signed distance field
with consistent gradients especially in the area with high
curvatures. While we can learn a field with more consistent
gradients by conducting optimization with our loss. Please
watch our video to visualize the change of our loss in the
whole optimization process.

Moreover, we also visualize the learned level sets in the
field in our video. We show the level sets on different cross
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sections in one iteration, the level sets on the same cross
section but in different iterations, and the surfaces recon-
structed with different level sets. Please watch our video
for more information.

4. More Results
We report our numerical comparison in SIREN [4]

dataset in Tab.1 in our main submission. Here, we show the
visual comparison with SIREN in Fig. 2 and Fig. 4. The in-
put is a point cloud with dense points without normals. We
use SIREN and SIREN with our loss to learn SDFs from the
point cloud, respectively, and then run the marching cubes
algorithm to reconstruct surfaces. Due to the lack of normal
supervision, SIREN reconstructs the surface of Thai statue
with artifacts in Fig. 2, and totally fails to reconstruct sur-
faces in a more complex scene in Fig. 4. While our method
produces smoother and more completed surfaces by elimi-
nating signed distance ambiguity via aligning all level sets
to the zero level set.

We also report visual comparison with SIREN with nor-
mal supervision in Fig. 3. We can see that our method also
provide more geometry details than SIREN.

5. Comparisons with Supervised Methods
We report our advantage over methods using learned pri-

ors in Fig. 5. We compared with GenSDF [1] on shapes and
ConOcc [5] on large scenes. We can see that our method re-
veals more geometries than the counterparts. Moreover, we
do not produce artifacts inside of the shape like GenSDF.

6. Comparisons with NeuS
We report more comparisons with NeuS [6]. We first

report the distance between ours and the GT, which is a sin-
gle direction distance, under DTU dataset. Comparisons in
Tab. 1 indicates that our method significantly outperforms
NeuS. The comparisons we report in main text is the dis-
tance with both ours to the GT and the GT to ours.
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Figure 1. Visualization of level set alignment loss on different level sets.
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Figure 4. Visual comparisons with SIREN in learning SDFs from point clouds without normals.

The GT point clouds in DTU dataset contain large arti-
facts in some empty area in scenes like 40 and 83. Since
we do not produce artifacts in empty space like NeuS, this

makes the distance GT2Our increase even the distance in
another direction Our2GT shown in Tab.1 is smaller than
NeuS.



Method 24 37 40 55 63 65 69 83 97 105 106 110 114 118 122 Mean
NeuS 1.05 1.73 1.04 0.51 1.60 0.74 0.63 1.17 0.96 0.74 0.50 1.47 0.33 0.55 0.65 0.91

Ours(NeuS) 0.98 1.04 0.81 0.49 1.59 0.73 0.61 1.00 0.95 0.72 0.49 1.37 0.30 0.54 0.64 0.82

Table 1. The distance Our2GT in DTU dataset.
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Figure 2. Visual comparisons with SIREN in learning SDFs from
point clouds without normals.
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Figure 3. Reconstruction comparison with normal supervision.

Regarding the time complexity, we report results in
Fig. 6. We did not observe significant computation increase.
Although we involve two queries in each iteration, we con-
verge faster. Fig.6 shows our accuracy is higher than NeuS
at almost all time during training.
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Figure 5. Visual comparison with methods using priors.
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Figure 6. Time and accuracy.

7. Other Applications

Besides reconstructions from point clouds or multi-view
images, we also evaluate our method in other applications
including sphere tracing and collision detection. We show
the results on a slice in the learned signed distance fields
from NeuS and ours.

We do sphere tracing from a viewpoint inside of the
shape, the SDF with better gradient consistency can guide
sphere tracing to find more accurate intersections than the
SDF learned by NeuS. The visual comparison is shown in
Fig. 7 (a).

Similarly, we check the collision between a moving stick
and a shape, the potential collision points determined by the
SDF with better gradient consistency and the SDF learned
by NeuS are shown. The comparisons show that better gra-
dient consistency leads to more plausible collision points
which further achieves more real simulation. The visual
comparison is shown in Fig. 7 (b).

Please watch our video for more details.
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Figure 7. Comparisons in (a) sphere tracing and (b) collision de-
tection.

8. Implementation
Code and data are available at https://github.

com/mabaorui/TowardsBetterGradient.
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