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Organization. In the supplementary material, we provide
the implementation details and hyper-parameter configura-
tions in Appendix A. Further, we show the results for class-IL
continual learning and additional visualization of examples
generated by QDI in Appendix B.

A. Experimental Details
We follow the base hyper-parameter setup from Buzzega

et al. [1] for SCL and HCL experiments. We use an SGD
optimizer for experiments with base learning rate as 0.03 for
all the models. For each new task a total of 200 epochs are
utilized to train the current model and we use the average
accuracy metric on the validation set to store the best-model
for evaluation for each task. Batch size is set as 32 and
training is conducted on one NVIDIA V100 GPU of 16G
for CIFAR-10 experiment and 32G for Split CIFAR-100 and
Tiny-ImageNet datasets. For knowledge distillation methods,
we use α and β equal to 1.0 for Split CIFAR-10, 3.0 for Split
CIFAR-100 and Tiny-ImageNet and β equal to 0.3 with
buffer. QDI previous class target labels are evenly sampled
across previous tasks. Optimization hyper-parameters for
QDI are provided next for three datasets, each shared across
all networks during the training run:

• Split CIFAR-10. Optimization using Adam optimizer
of learning rate 0.005,

αtv = 0.001, αℓ2 = 0, αfeature = 0.1

for 0.5K iterations.d(·, ·) is MSE loss.

• Split CIFAR-100. Optimization using Adam with
learning rate 0.03,

αtv = 0.003, αℓ2 = 0.003, αfeature = 0.2

for 0.5K iterations. d(·, ·) is MSE loss.

• Split Tiny-ImageNet. Optimization based on Adam
optimizer of learning rate 0.05,

αtv = 0.001, αℓ2 = 0.05, αfeature = 0.5

for 0.5K iterations. d(·, ·) is MSE loss.

*Work done during an internship at NVIDIA.

For each dataset we found the QDI hyper-parameters based
on a validation set obtainend by randomly sampling 10% of
the training set. All results in main paper are on the test set,
with 3 independent runs of the hyperset from random seeds
for means and standard deviations.

B. Additional Results

Class-IL continual learning. Table B.1 shows the results
for class-IL continual learning.
Visualization of synthesized examples. We provide extra
visualization of QDI samples for the CIFAR-100 and Tiny-
ImageNet datasets as in Fig. B.1. It can be observed that the
proposed method scales across datasets with high fidelity in
synthesized samples. More interestingly, the optimization
step can find very close proxy of the current task seman-
tics in older domains and dream out visual features of high
perceptual realism.
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METHOD B SPLIT CIFAR-10 SPLIT CIFAR-100 SPLIT TINY-IMAGENET

AT (↑) FT (↓) AT (↑) FT (↓) AT (↑) FT (↓)

STANDARD CONTINUAL LEARNING

FINETUNE – 19.60 (± 0.03) 96.66 (± 0.12) 6.93 (± 1.13) 60.53 (± 1.11) 6.78 (± 0.14) 40.67 (± 0.92)

DI [6] – 22.72 (± 1.02) 77.65 (± 0.30) 7.21 (± 0.75) 63.90 (± 2.87) 7.28 (± 2.05) 51.70 (± 0.63)

SI [7]∗ – 19.48 (± 0.17) 95.78 (± 0.64) – – 6.58 (± 0.31) –
LWF [3]∗ – 19.61 (± 0.05) 96.69 (± 0.25) – – 8.46 (± 0.22) –

KD (OURS) – 22.73 (± 0.75) 87.00 (± 2.29) 16.77 (± 0.63) 80.65 (± 0.99) 20.86 (± 0.14) 42.38 (± 0.95)

KD W/ QDI (OURS) – 19.75 (± 0.03) 0.08 (± 0.02) 22.53 (± 1.15) 16.50 (± 2.72) 24.21 (± 0.52) 36.58 (± 1.56)

ICARL [4]∗ ✓ 49.02 (± 3.20) 28.72 (± 0.49) – – 7.53 (± 0.79) –
A-GEM [2] ✓ 21.98 (± 0.56) 92.18 (± 1.98) 5.04 (± 0.12) 91.93 (± 0.22) 7.49 (± 0.12) 72.04 (± 0.34)

ER [5] ✓ 48.56 (± 1.40) 58.11 (± 1.61) 9.65(± 0.95) 85.20 (± 1.27) 10.70 (± 0.27) 83.99 (± 0.18)

DER [1] ✓ 66.08 (± 1.18) 27.40 (± 2.16) 19.01 (± 0.74) 65.06 (± 0.15) 10.01 (± 1.52) 65.66 (± 3.60)

DER++ [1] ✓ 67.23 (± 1.36) 26.13 (± 0.28) 21.38 (± 0.48) 56.17 (± 3.37) 8.23 (± 0.31) 68.51 (± 1.17)

KD W/ BUFFER (OURS) ✓ 70.34 (± 1.07) 16.32 (± 0.18) 25.19 (± 0.15) 40.53 (± 0.73) 29.21 (± 0.74) 16.48 (± 0.70)

MULTITASK∗ – 92.20 (± 0.15) N/A 70.32 (± 0.48) N/A 59.99 (± 0.19) N/A

HETEROGENEOUS CONTINUAL LEARNING

FINETUNE – 21.45 (± 0.75) 91.24 (± 2.33) 5.27 (± 0.23) 72.99 (± 1.94) 7.90 (± 0.13) 57.23 (± 0.11)

DI [6] – 20.67 (± 1.10) 70.97 (± 2.13) 6.20 (± 1.40) 73.70 (± 1.49) 6.39 (± 0.60) 51.14 (± 0.87)

KD (OURS) – 30.21 (±0.11) 27.54 (± 1.91) 12.94 (± 1.13) 58.89 (± 1.64) 14.18 (± 0.35) 46.91 (± 0.59)

KD W/ QDI (OURS) – 33.89 (± 3.53) 31.73 (± 3.51) 15.86 (±1.51) 32.73 (±0.77) 15.38 (±1.67) 37.27 (±1.31)

ER [2] ✓ 38.77 (± 1.99) 69.61 (± 2.20) 7.43 (± 0.36) 82.85 (± 0.20) 7.59 (± 0.12) 61.77 (± 0.31)

A-GEM [2] ✓ 19.67 (± 0.41) 89.26 (± 2.89) 4.62 (± 0.02) 88.78 (± 0.84) 6.93 (± 0.11) 63.93 (± 0.73)

DER [1] ✓ 44.13 (± 0.98) 57.64 (± 4.76) 10.11 (± 0.65) 80.92 (± 1.35) 8.11 (± 0.26) 56.73 (± 0.81)

DER++ [1] ✓ 48.82 (± 1.75) 50.11 (± 2.74) 10.97 (± 0.55) 73.62 (± 0.86) 8.88 (± 0.61) 55.54 (± 2.13)

KD W/ BUFFER (OURS) ✓ 65.40 (± 0.96) 10.13 (± 2.19) 21.00 (± 1.01) 38.49 (± 1.39) 18.77 (± 0.91) 8.76 (± 0.79)

Table B.1. Accuracy and forgetting with class-IL on standard CL and HCL. The best results are highlighted in bold. B denotes replay-buffer,
AT ,FT denote average accuracy and forgetting after the completion of training.∗ denotes the methods whose numbers were used from
Buzzega et al. [1] and − indicates the unavailability of results. All other experiments are over three independent runs.
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Figure B.1. More QDI visualization for CIFAR-100 and Tiny-ImageNet datasets. Best viewed in color.
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