
Tunable Convolutions with Parametric Multi-Loss Optimization
Supplementary Materials

Matteo Maggioni, Thomas Tanay, Francesca Babiloni, Steven McDonagh, Aleš Leonardis
Huawei Noah’s Ark Lab

{matteo.maggioni, thomas.tanay, francesca.babiloni, steven.mcdonagh, ales.leonardis}@huawei.com

A. Implementation Aspects
In this section we will give detailed information on the

architectures used in the experiments of the main paper.

A.1. Architectures

In our comparisons against controllable networks, we
use two backbones: a ResNet [S6, S11] for image restora-
tion experiments, and a UNet [S8, S14] for style transfer.

Image Restoration. An illustration of the architecture
can be found in Fig. S1. All convolutions have 3× 3 kernel
size and 64 channels. The first convolution in each Shuf-
fleBlock expands the number of channels from 64 to 256,
and pixel shuffling [S15] upsamples the resolution by ×2.
A long skip connection is used connecting the output of the
first layer to the output of the last residual block. Obvi-
ously the two ShuffleBlocks are only used in our ×4 super-
resolution experiments, and in the case of our denoising ex-
periments the final predicted image is obtained through the
last convolution directly after the skip connection.

Style Transfer. An illustration of the architecture can be
found in Fig. S2. The first and last convolutions use 9 × 9
kernel size, whereas the size for all other convolutions is
3× 3. Initial number of channels is 64. At every downsam-
pling stage resolution is halved and number of channels is
doubled. Downsampling is performed with a strided con-
volution with stride 2. Upsampling is done with ×2 nearest
interpolation. Instance normalization [S18] is used every-
where (aside from the very last layer), and the input of each
convolution is padded with reflection mode. No skip con-
nections are used between encoder and decoder stages.

A.2. Tunable Convolutions

During training, we sample a different –random– set of
parameters for each instance in the batch. Consequently, we
have in general different convolutional weights (i.e. kernels
and biases) for each instance in the batch. When the batch
size is equal to 1, or when the parameters of all instances in
the batch are equal, we can apply a standard forward convo-
lutional operation. Conversely, if batch size is larger than 1

C
o
n
v
B

lo
ck

R
es

B
lo

ck

…

R
es

B
lo

ck

S
h
u
ff

le
B

lo
ck

S
h
u
ff

le
B

lo
ck

C
o
n

v
2

D

Only for x4 Super-Res

C
o
n
v
2
D

R
eL
U

ConvBlock

C
o
n
v
2
D

R
eL
U

C
o
n
v
2
D

ResBlock ShuffleBlock

C
o
n
v
2
D

P
ix
el
S
h
u
ff
le

Figure S1. Illustration of the ResNet [S6, S11] architecture used
for image restoration experiments.

C
o
n
v
B
lo
ck

R
es
B
lo
ck

…

R
es
B
lo
ck

E
n
co
d
er
B
lo
ck

E
n
co
d
er
B
lo
ck D
ec
o
d
er
B
lo
ck D
ec
o
d
er
B
lo
ck

C
o
n
v
2
D

C
o
n
v
2
D

In
st
an
ce
N
o
rm

ConvBlock

R
eL
U

C
o
n
v
2
D

In
st
an
ce
N
o
rm

R
eL
U

ResBlock

C
o
n
v
2
D

In
st
an
ce
N
o
rm

R
eL
U

S
tr
id
ed
C
o
n
v
2
D

In
st
an
ce
N
o
rm

EncoderBlock

R
eL
U

C
o
n
v
2
D

In
st
an
ce
N
o
rm

R
eL
U

N
ea
re
st
U
p
s.

C
o
n
v
2
D

EncoderBlock

In
st
an
ce
N
o
rm

R
eL
U

Figure S2. Illustration of the UNet [S8, S14] architecture used for
style transfer experiments.

and different parameters are used for different instances, we
need a mechanism to apply a different convolution to each
instance in the batch.

1



Algorithm S1 Forward pass of tunable convolutions.

Input: X ∈ Rn×h×w×c

Input: Ω ∈ Rn×p ▷ Parameters
Input: K ∈ Rp×k×k×c×d ▷ Kernels
Input: B ∈ Rp×d ▷ Biases
Output: Y ∈ Rn×h×w×d

procedure TUNABLECONV2D(X,Ω,K,B)
A← ϕt(Ω) ∈ Rn×p

Y ← {}
for j ← 1, n do

α← Aj ∈ Rp ▷ Aggregation weights
k̂←∑p

i=1 αi ·Ki ∈ Rk×k×c×d

b̂←∑p
i=1 αi ·Bi ∈ Rd

xj ←Xj ∈ Rh×w×c

yj ← xj ⊛ k̂ + b̂ ∈ Rh×w×d

Y ← Y + {yj}
end for

end procedure

We implement our tunable convolution as a custom
layer which includes an internal 5D kernel tensor K ∈
Rp×k×k×c×d where p is the number of parameters, k is
the kernel size, c is the number of input channels, and d
is the number of output channels, and a 2D bias B ∈ Rp×d.
Then in the forward pass, given a batch of inputs X ∈
Rn×h×w×c, being n the batch size, and a batch of param-
eters Ω ∈ Rn×p, we operate as outlined in Algorithm S1.
Note that in the algorithm we have used a for loop to indi-
cate that the convolution is instance-wise. However in our
implementation the input to X is reshaped to 1×h×w×n·c,
the tuned kernels K̂ (obtained by reducing over p) are re-
shaped to k × k × n · c × d, and then the final output is
computed via a group convolution between X and K̂ with
a number of groups equal to the batch size n.

B. Ablation
In this section we will perform ablation on various char-

acteristics of the proposed tunable convolutions. Let us set
the stage by building a multi-loss with p = 2 objectives,
namely a reconstruction objective Lrec measuring distortion
with an L1 distance, and a perceptual objective Lper imple-
mented as LPIPS loss [S24]. Our tunable model is trained
using a combinations of these losses defined as

L̂rp = ω1 · Lrec + ω2 · Lper, (S1)

where, as explained in Sec. 3.2 of the main paper, the pa-
rameter vector ω is randomly sampled at training time to
train all possible intermediate behaviors.

In this experiment, we objectively evaluate the differ-
ent methods by measuring their ability to maximize PSNR
when Lrec dominates, and minimizing LPIPS when Lper

Kodak [S9] CBSD68 [S13]

ω1 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Lrec

ω2 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 Lper

PS
N

R

34.10 34.59 35.12 35.26 35.61 33.16 34.04 34.19 34.29 34.60 Fixed
34.10 23.40 20.65 22.55 35.61 33.16 22.63 19.74 21.65 34.60 DNI [S20]
34.14 31.93 31.75 33.23 35.33 33.31 31.40 31.16 32.43 34.42 DyNet [S16]
34.90 35.11 35.26 35.34 35.33 33.97 34.18 34.34 34.42 34.42 CFSNet [S19]
34.95 35.26 35.40 35.45 35.40 34.04 34.31 34.44 34.48 34.43 Ours

L
PI

PS

0.084 0.087 0.095 0.103 0.106 0.094 0.095 0.105 0.113 0.118 Fixed
0.084 0.129 0.129 0.129 0.106 0.094 0.144 0.144 0.144 0.118 DNI [S20]
0.094 0.107 0.098 0.099 0.102 0.104 0.116 0.108 0.111 0.115 DyNet [S16]
0.095 0.097 0.099 0.099 0.102 0.104 0.106 0.108 0.112 0.115 CFSNet [S19]
0.089 0.096 0.098 0.099 0.101 0.098 0.106 0.107 0.111 0.114 Ours

Table S1. Tuning denoising perceptual quality. Our method
can tune its behaviour to optimize perceptual quality (ω1, ω2) =
(0.00, 1.00) or data fidelity (1.00, 0.00) with no retraining, while
outperforming other tunable methods in the most of the evaluated
cases, and being even comparable to a Fixed model trained specif-
ically for each parameter combination.

dominates. In Table S1, we report performance for dif-
ferent combinations of the ωi parameters averaged over
three noise levels σ ∈ [5, 15, 30]. In addition to the base-
line methods DNI [S20], DyNet [S16], and CFSNet [S19],
we also provide comparison against Fixed networks trained
individually for each parameter combination to provide
upper-bound performances (i.e. five separate training runs).
From the table we can clearly see that the proposed method
almost always achieves better PSNR accuracy and LPIPS
quality among the controllable methods, and it is even com-
parable if not better than the Fixed models which, we recall,
are specialized networks individually trained for each com-
bination. Among the baseline methods we note that DNI
and DyNet are unable to generalize well to the intermediate
parameter combinations.

B.1. Number of Tunable Convolutions

We recall that our tunable convolutions act as a drop-
in replacement for traditional convolutions in any existing
neural network. In the main paper, the underlying strategy
in all our experiments was to replace all convolutions of the
baseline networks with our tunable variants. However nat-
ural questions arise related to how network performance is
affected when a smaller subset of the original convolutions
is replaced.

For this ablation, we follow the same denoising setup
explained previously using the loss (S1) to control fidelity
and perceptual objectives, and we train different versions of
the same model by varying the number of layers replaced
with our tunable convolutions. As illustrated in Fig. S1,
we have 18 layers in total, i.e. 16 residual blocks plus 1
first and 1 last convolution. In what follows, we express the
number of tunable layers as a percentage relative to the total
number of layers. We instantiate five variants replacing: 5%
of layers (i.e. replacing only layer 18), 30% (layer 13 to 18),



(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

(
Lrec,Lper

)

35.0

35.1

35.2

35.3

35.4

P
S

N
R

5% 30% 50% 70% 100%

(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

(
Lrec,Lper

)

0.090

0.095

0.100

0.105

0.110

L
P

IP
S

5% 30% 50% 70% 100%

Figure S3. Tunable denoising performance for a model trained for
reconstruction fidelity Lrec and perceptual quality Lper objectives
on Kodak [S9] dataset with varying percentage of tunable convo-
lutional layers.

50% (9 to 18), 70% (5 to 18), and the 100% (1 to 18). Note
that in all cases we place all the tunable layers at the end
of the model to maximize their influence on the predicted
output image. The 100% configuration is the same one used
in the main paper.

In Fig. S3 we illustrate the performance of these differ-
ent tunable networks. It is evident that, as the replacement
percentage decreases, the performance tends to become uni-
form over the parameter range. In fact in these cases the
model is not able to adapt to the different configurations of
the parameters, and thus converges to an optimal average
solution. The 100% configuration is clearly optimal as it
shows the largest degree of adaptation, and furthermore has
the best PSNR and LPIPS when the corresponding tuning
parameters are dominant. Interestingly the best PSNR score
is obtained with tuning (0.75, 0.25), thus highlighting that
some contribution of perceptual objective Lper also benefits
the reconstruction fidelity.

B.2. Number of Objectives

In the main paper we focused on experiments based on
p = 2 objectives, as this is the working setup of our main
comparison methods [S16, S19]. An advantage of the pro-
posed tunable convolutions is the ability to deal with even
more objectives, which are all explicitly optimized during
training. In the main paper, we have subjectively demon-

Kodak [S9] CBSD68 [S13]

ω1 0.00 0.00 1.00 0.00 0.00 1.00 Lrec

ω2 0.00 1.00 0.00 0.00 1.00 0.00 Lper

ω3 1.00 0.00 0.00 1.00 0.00 0.00 Lnoise

PSNR 26.73 33.66 35.31 26.78 32.77 34.37

O
ur

s

LPIPS 0.099 0.083 0.098 0.108 0.093 0.107

PSNRη 51.91 33.66 35.31 50.53 32.77 34.37

Table S2. Tuning a single model for p = 3 objectives. We test dif-
ferent parameter (ω1, ω2, ω3) configurations to optimize fidelity
(1.00, 0.00, 0.00), perceptual quality (0.00, 1.00, 0.00) or noise
preservation (0.00, 0.00, 1.00). As expected, each configuration
maximizes the corresponding metric.

strated this ability in Fig. 7 through style transfer [S8]; here
we also present objective evaluation in this scenario to fur-
ther substantiate our claim.

Following the denoising setup discussed in Sec. 4.1.1 of
the main paper, let us train a tunable network using an in-
creased number (p = 3) of objectives. In order to evalu-
ate objective performance, we use three (competing) objec-
tives that explicitly optimize different metrics: namely a re-
construction objective Lrec optimizing PSNR, a perceptual
objective Lper optimizing LPIPS, and a noise preservation
objective Lnoise optimizing PSNRη . As in the main paper,
we report performance averaged over three levels of noise
σ ∈ [5, 15, 30]. Numerical results reported in Table S2
clearly show that the three different metrics are maximized
when the corresponding parameter is dominant. In other
words, best PSNR is obtained when ω1, i.e. the parameter
controlling the reconstruction objective, is equal to 1. Simi-
lar reasoning applies to the other metrics and corresponding
parameters. Further, we notice that the performance ob-
tained by simultaneously training for the three objectives
is similar, and in some cases even better, than the perfor-
mance obtained by training two objectives, i.e. (Lrec,Lper)
in Table S1 and (Lrec,Lnoise) in Table 1 of the main paper,
thus showing that our method can retain accuracy even with
an increased number of tunable objectives.

In Fig. S4, we show results from the Kodak dataset [S9]
obtained by tuning our model to generate outputs with dif-
ferent characteristics. Noise in the input image is Gaussian
with standard deviation σ = 30. As one can see, mini-
mizing denoising strength retains a large amount of resid-
ual noise, maximizing fidelity generates smooth and noise-
free images, and maximizing perceptual quality generates
sharper details.

B.3. Number of Kernels and Biases

As a natural extension for our tunable convolutions, we
explore the potential of increasing the number of kernels
(and biases) by modifying the function to predict aggre-



Kodak [S9] CBSD68 [S13]

ω1 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 Lrec

ω2 1.00 0.75 0.50 0.25 0.00 1.00 0.75 0.50 0.25 0.00 Lper

PS
N

R 34.95 35.26 35.40 35.45 35.40 34.04 34.31 34.44 34.48 34.43 q=2

35.25 35.33 35.40 35.44 35.46 34.30 34.38 34.44 34.47 34.47 q=4

35.32 35.40 35.46 35.50 35.52 34.35 34.42 34.47 34.50 34.50 q=8

L
PI

PS

0.089 0.096 0.098 0.099 0.101 0.098 0.106 0.107 0.111 0.114 q=2

0.095 0.099 0.104 0.109 0.112 0.104 0.109 0.113 0.120 0.124 q=4

0.093 0.098 0.105 0.105 0.106 0.101 0.106 0.109 0.116 0.119 q=8

Table S3. Tuning denoising with p = 2 objectives, namely re-
construction fidelity and perceptual quality. We denote with q the
number of kernels and biases inside each tunable convolution. The
q kernels (and biases) are aggregated by predicting weights from
the p = 2 parameters using a fully-connected layer. We highlight
the baseline case where q = p = 2.

gation weights defined in Eq. (6) of the main paper from
ϕt : Rp → Rp to ϕt : Rp → Rq , for some q > p. In
other words, instead of having exactly one kernel for every
external parameter ω, we can use ϕt as a small expansion
network to map the p input parameters to a larger number q
of tunable kernels. Under this notation, it is obvious that the
baseline case of tunable convolutions described in the main
paper can be simply obtained as a special case of this more
general formulation by setting q = p.

We report in Table S3 PSNR and LPIPS results of our
usual tunable network trained to optimize denoising recon-
struction and perceptual quality. Performance is as always
averaged over noise levels σ ∈ [5, 15, 30]. As one can see,
increasing q will generally provide an increase in perfor-
mance, and in particular the PSNR improvements are sig-
nificant in cases where Lper dominates, and PSNR seems
to saturate at q = 8. Differently, LPIPS is similar to the
baseline case q = 2 where Lper dominates, however, with
larger q, the LPIPS decreases more as the influence of Lrec
increases. This might also be a consequence of the fact that
PSNR increases as well in these cases. In conclusion, we
note that increasing the number q of kernels indeed augment
the representation power of the model, as evidenced by the
improved PSNR and the increased ability of the model to
adapt to changes in the parameters, i.e. the difference in
LPIPS between parameters (0.00, 1.00) and (1.00, 0.00) is
larger than in the baseline case, hence showing a better abil-
ity to disentangle the two different objectives. However the
baseline case offers a good compromise between overall
performance, dynamic behavior over the parameters, and
it is also has the smallest memory requirements.

C. Additional Experiments

In this section we will provide additional details and vi-
sual results, supplementing the experimental section of the
main paper.

Denoising Super-Resolution Style Transfer
GFLOPS Params GFLOPS Params GFLOPS Params

Baseline 19.38 1.18 M 31.89 1.48 M 13.24 8.78 M
DyNet [S16] 19.38 1.18 M 51.21 1.55 M 13.24 8.78 M

CFSNet [S19] 19.38 1.43 M 43.97 2.02 M 13.24 9.15 M
CResMD [S5] 19.38 1.18 M 31.89 1.48 M N/A

Ours 19.38 2.37 M 31.89 2.96 M 13.24 17.55 M

Table S4. Number of trainable network parameters and GFLOPS
complexity of all networks used in our experiments. GFLOPS is
computed with respect to an input resolution of 128×128 and p =
2 input tuning parameters. The proposed method always maintains
the same complexity as the baseline (non-tunable) model.

C.1. Computational Complexity

Tunable Networks. Let us recall that we use a ResNet
backbone for our image restoration experiments, and a
UNet backbone for style transfer. Detailed settings of the
baseline architectures can be found in Sec. A.1. Here we
explain how these backbones have been configured to im-
plement DyNet [S16], CFSNet [S19], CResMD [S5], as
well as our proposed method. As mentioned in Sec. B.1,
for the proposed method we replace all convolutions in the
model with our tunable variants. For DyNet, CFSNet, and
CResMD, we follow the settings proposed by the original
authors, and apply feature modulation at every layer except
the first and last one. Since DyNet and CFSNet needs a
second –tuning– branch to enable feature modulation, in or-
der to maintain the same complexity as all other compared
methods, we halve the size of the convolutions, i.e. in our
ResNet we use 8 residual blocks instead of 16, whereas in
our UNet we use only 1 convolution at every encoder and
decoder stages, and 3 residual blocks in the latent stage.

A summary of the total number of network parameters
(i.e. trainable weights, not to be confused with the tuning
parameter ω) and computational complexity measured as
floating point operations per second (FLOPS) for all config-
uration is summarized in Table S4. From the table we notice
that, after reducing the number of convolutions by half, the
complexity of DyNet and CFSNet is equal to the baseline
case for denoising and style transfer. However in the case
of super-resolution we still notice an increase in complex-
ity due to the modulation of the features in the upsampling
stage which requires additional tuning blocks that cannot
be removed. Conversely the proposed method is able to in-
crease the capacity of the underlying networks (by means
of the increased number of parameters) while maintaining
virtually the same complexity as the baseline. Note that we
do not provide numbers for CResMD in the case of style
transfer because the authors did not provide implementa-
tion of their residual modulation strategy in case of blocks
that changes the feature resolution, so we cannot directly
apply their strategy to a UNet.



C.2. Training

Tunable Networks. In all our experiments we sample
the tuning parameters ω uniformly in [0, 1], and we sample
a different set of parameters for each instance and for each
batch during optimization. In the case of DyNet [S16] and
CFSNet [S19], we follow the training setup proposed by
the original authors, and we first train the main branch of
the networks using the first objective for 250K iterations,
and then we fix the trained weights of the main branch
while we train the second tuning branch for the remaining
250K iterations using the second objective. In the case of
CResMD [S5], we simply train the network using a single
fixed objective and we randomize the degradation settings
(noise standard deviation σ and blur standard deviation ρ)
using the same settings as proposed by the original authors.
In all cases we use Adam [S17] optimizer and the learning
rate is fixed and equal to 1e−4 throughout the training. In
all cases, we optimize for 500K iterations using batch size
16 and input patch size 64× 64.

Traditional Networks. For our experiments using
state-of-the-art baselines, we take SwinIR [S10] and
NAFNet [S4] implementation provided by the authors, and
replace every learnable operation with our tunable counter-
parts, including standard, depth-wise, point-wise, strided
convolutions, linear (dense, fully-connected MLPs) layers
as well as spatial, channel, and window attention.

Traditional Network – SwinIR Following [S10], we
train our tunable SwinIR model defined as proposed by
the authors for the case of “color image denoising”. This
model is trained for 1.6M iterations using Adam [S17],
batch size 8, patch size 128 × 128, and learning rate 2e−4

which is halved four times at iterations [800K, 1.2M, 1.4M,
1.5M]. We optimize a reconstruction and noise loss based
on Charbonnier distance [S3]. For training we use a combi-
nation of DIV2K [S2] and Flickr2K [S11] datasets, as op-
posed to the original SwinIR, which also uses additional
BSD500 and WED datasets [S10]. We train three differ-
ent models, one for each tested Gaussian noise level, that
is σ ∈ [15, 25, 50]. In our super-resolution experiment, we
use a tunable SwinIR as defined by the authors for the case
of “classical image SR” [S10] trained on 48× 48 patch size
from DIV2K. In this case we train for 500K iterations, batch
size 32, learning rate 2e−4 which is halved four times at it-
erations [250K, 400K, 450K, 475K]. The tunable network
is optimized with a reconstruction L1 objective for data fi-
delity, and the GAN objective [S21] defined in Sec. 4.1.3 of
the main paper.

Traditional Network – NAFNet. The second state-
of-the-art architecture considered in the main paper is
NAFNet [S4]. In our experiments we use NAFNet version
with “width 32” and “36 # of blocks” originally proposed
by the authors. We train on (medium) sRGB SIDD [S1] us-
ing 320 training images and 1, 280 validation crops. In this

experiment, we optimize using AdamW [S12] for 200K it-
erations, with β1 = β2 = 0.9, batch size 32, patch size
256 × 256, and initial learning rate 1e−3 which is then
decreased with cosine annealing to the final 1e−7 value.
Our tunable loss includes a reconstruction objective de-
fined as PSNR, and a noise preservation objective defined
as PSNRη . Note that in Table 2b of the main paper, in or-
der to include all metrics reported in the original paper [S4],
we also provide SSIMη , which is the SSIM [S22] between
the predicted image and the target image yη used in Eq. (9).
Note that for SSIM, in line with the authors of NAFNet, we
use a 3D SSIM implementation to compute the metric di-
rectly on the 3D RGB image domain, rather than averaging
2D SSIM of each image channel.

Style Transfer. The images used for style transfer are
Mosaic [S25], Edtaonisl [S26], and Kandinsky [S27]. If
needed, we reduce the resolution of the style images such
that their maximum dimension is 800px. The weights
(λgram, λvgg, λtv) for the style transfer loss defined in
Sec. 4.2 of the main paper are (3e−3, 3e2, 1e−4) for Mosaic,
(1e−3, 4e2, 1e−6) for Edtaonisl, and (1e−3, 6e2, 1e−6) for
Kandinsky.

C.3. Additional Visual Results

In the remainder of these supplementary materials, we
provide the following additional figures. More information
about the experiments can be found in the corresponding
sections, indicated in parentheses.

• Fig. S4. Denoising: new visualizations with p = 3
objectives for our method (Sec. B.2);

• Fig. S5. Denoising: additional comparisons against
CFSNet [S19] (Sec. 4.1.1 of the main paper);

• Fig. S6. Denoising and deblurring. New comparison
against CResMD [S5] (Sec. 4.1.2 of the main paper);

• Fig. S7. Denoising and deblurring: additional visual-
izations for our method (Sec. 4.1.2 of the main paper);

• Fig. S8. Super-resolution: additional comparisons
against CFSNet [S19] (Sec. 4.1.3 of the main paper);

• Fig. S9. Denoising: new visualizations for tun-
able NAFNet [S4] applied on real raw images from
SIDD [S1] (Sec. 4.1.1 of the main paper);

• Fig. S10. Super-resolution: new visualizations for tun-
able SwinIR [S10] (Sec. 4.1.3 of the main paper);

• Fig. S11. Style transfer: new visualizations with p = 3
objectives for our method (Sec. 4.2 of the main paper);

• Fig. S12 & Fig. S13. Style transfer: additional com-
parisons against DyNet [S16] (Sec. 4.2 of the main pa-
per).



(Lrec,Lper,Lnoise)

(0.00, 0.00, 1.00) (0.00, 1.00, 0.00) (1.00, 0.00, 0.00)

Ground-Truth Input Max Noise Preservation Max Perceptual Quality Max Fidelity

Figure S4. Image 15 (top) and 24 (bottom) from the Kodak dataset [S9] corrupted by Gaussian noise with standard deviation σ = 30.
A single model is tuned at inference time to generates images with different characteristics by interacting with the three parameters
corresponding to reconstruction fidelity Lrec, perceptual quality Lper, and noise preservation Lnoise.

← Less Denoising (Lrec,Lnoise) More Denoising→
(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

G
ro

un
d-

tr
ut

h

C
FS

N
et

[S
19

]

In
pu

t

O
ur

s

Figure S5. Tuning denoising strength on image 10 from the Kodak dataset [S9] corrupted by Gaussian noise with standard deviation
σ = 30. Our method generates images with a more consistent increase in denoising strength as well as better details and fewer artifacts.



Ground-truth Input

← Less Deblurring More Deblurring→

C
R

es
M

D
[S

5]

←
L

ess
D

enoising

(0.00, 0.00) (0.00, 0.50) (0.00, 1.00)

(0.50, 0.00) (0.50, 0.50) (0.50, 1.00)

M
ore

D
enoising

→

(1.00, 0.00) (1.00, 0.50) (1.00, 1.00)

← Less Deblurring Lblur More Deblurring→

O
ur

s

←
L

ess
D

enoising

(1.00, 0.00) (1.00, 0.50) (1.00, 1.00)

L
noise

(1.00, 0.00) (1.00, 0.50) (1.00, 1.00)

M
ore

D
enoising

→

(1.00, 0.00) (1.00, 0.50) (1.00, 1.00)

Figure S6. Image 07 from the Kodak dataset [S9] corrupted by Gaussian noise σ = 30 and Gaussian blur with size ρ = 2. Our method
optimizes denoising and deblurring objective for all combinations of parameters (ω1, ω2). CResMD is trained on a single objective to
maximize fidelity conditioned on the true parameters, i.e. (1.00, 0.50), and thus generates artifacts for out-of-distribution inputs.



Ground-Truth Blur ρ = 0 ρ = 1 ρ = 2 ρ = 3 ρ = 4

(Lnoise,Lblur)

(0.00, 0.00)

(1.00, 0.00)

(1.00, 1.00)

(0.00, 1.00)

Figure S7. Image 01 from the Kodak dataset [S9] corrupted by Gaussian noise with standard deviation σ = 30 and Gaussian blur with
size 21 × 21 and various levels of standard deviation ρ. A single model is tuned at inference time to generates images with different
characteristics by interacting with two parameters corresponding to noise Lnoise and deblurring Lblur strength.



← Perceptual Quality (Lrec,Lgan) Fidelity→
(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

G
ro

un
d-

tr
ut

h

D
yN

et
[S

16
]

In
pu

t

O
ur

s

G
ro

un
d-

tr
ut

h

D
yN

et
[S

16
]

In
pu

t

O
ur

s

G
ro

un
d-

tr
ut

h

D
yN

et
[S

16
]

In
pu

t

O
ur

s

Figure S8. Tuning ×4 super-resolution fidelity and perceptual quality. From top to bottom: image 02, 04, and 07 from the Kodak
dataset [S9]. Our method generates more detailed and perceptually pleasing results and while the same time also minimizing artifacts.



← Less Denoising (Lrec,Lnoise) More Denoising→
Ground-truth Input (0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

Figure S9. Tuning denoising strength using our tunable NAFNet [S4]. From top to bottom: image 0350, 0900, 1150 from the SIDD
validation dataset [S1].

← Perceptual Quality (Lrec,Lgan) Fidelity→
Ground-truth Input (0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

Figure S10. Tuning ×4 super-resolution fidelity and perceptual quality using our tunable SwinIR [S10]. From top to bottom: image
zebra from Set14 [S23], 102061 from BSD100 [S13], and img001 from Urban100 [S7].



(Lmosaic,Ledtaonisl,Lkandinsky)

Reference (0.00, 0.00, 1.00) (0.00, 0.50, 0.50) (0.00, 1.00, 0.00) (0.50, 0.00, 0.50) (0.50, 0.50, 0.00) (1.00, 0.00, 0.00)

Figure S11. Tuning style transfer for different combination of parameters controlling Mosaic, Edtaonisl, and Kandinsky influence. From
top to bottom: image 02, 09, 15, 22, and 23 from the Kodak [S9] dataset.



(Lmosaic,Lkandinsky)

(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

R
ef

er
en

ce

D
yN

et
[S

16
]

O
ur

s

R
ef

er
en

ce

D
yN

et
[S

16
]

O
ur

s

Figure S12. Tuning style transfer for different combination of parameters controlling Mosaic and Kandinsky influence. From top to bottom:
image 03 and 12 from the Kodak [S9] dataset.



(Lmosaic,Ledtaonisl)

(0.00, 1.00) (0.25, 0.75) (0.50, 0.50) (0.75, 0.25) (1.00, 0.00)

R
ef

er
en

ce

D
yN

et
[S

16
]

O
ur

s

R
ef

er
en

ce

D
yN

et
[S

16
]

O
ur

s

Figure S13. Tuning style transfer for different combination of parameters controlling Mosaic and Edtaonisl influence. From top to bottom:
image 13 and 19 from the Kodak [S9] dataset.



References
[S1] Abdelrahman Abdelhamed, Stephen Lin, and Michael S.

Brown. A high-quality denoising dataset for smartphone
cameras. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1692–1700, 2018. 5, 10

[S2] Eirikur Agustsson and Radu Timofte. NTIRE 2017 chal-
lenge on single image super-resolution: Dataset and study.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), pages 126–135, 2017. 5

[S3] P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud.
Two deterministic half-quadratic regularization algorithms
for computed imaging. In International Conference on Im-
age Processing (ICIP), volume 2, pages 168–172, 1994. 5

[S4] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In European Con-
ference on Computer Vision (ECCV), pages 17–33, 2022. 5,
10

[S5] Jingwen He, Chao Dong, and Yu Qiao. Interactive multi-
dimension modulation with dynamic controllable residual
learning for image restoration. In European Conference on
Computer Vision (ECCV), pages 53–68, 2020. 4, 5, 7

[S6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. 1

[S7] Jia-Bin Huang, Abhishek Singh, and Narendra Ahuja. Sin-
gle image super-resolution from transformed self-exemplars.
In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5197–5206, 2015. 10

[S8] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual
losses for real-time style transfer and super-resolution. In
European Conference on Computer Vision (ECCV), pages
694–711, 2016. 1, 3

[S9] Kodak Image Dataset. http://r0k.us/graphics/
kodak/, 1999. 2, 3, 4, 6, 7, 8, 9, 11, 12, 13

[S10] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc
Van Gool, and Radu Timofte. SwinIR: Image restoration
using swin transformer. In IEEE/CVF International Confer-
ence on Computer Vision Workshops (ICCVW), pages 1833–
1844, 2021. 5, 10

[S11] Bee Lim, Sanghyun Son, Heewon Kim, Seungjun Nah, and
Kyoung Mu Lee. Enhanced deep residual networks for sin-
gle image super-resolution. In IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
pages 1132–1140, 2017. 1, 5

[S12] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations (ICLR), 2019. 5

[S13] David Martin, Charless Fowlkes, Doron Tal, and Jitendra
Malik. A database of human segmented natural images
and its application to evaluating segmentation algorithms
and measuring ecological statistics. In IEEE International
Conference on Computer Vision, volume 2, pages 416–423,
2001. 2, 3, 4, 10

[S14] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-

tation. In Medical Image Computing and Computer-Assisted
Intervention (MICCAI), pages 234–241, 2015. 1

[S15] Wenzhe Shi, Jose Caballero, Ferenc Huszár, Johannes Totz,
Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan
Wang. Real-time single image and video super-resolution
using an efficient sub-pixel convolutional neural network. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 1874–1883, 2016. 1

[S16] Alon Shoshan, Roey Mechrez, and Lihi Zelnik-Manor.
Dynamic-Net: Tuning the objective without re-training for
synthesis tasks. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3214–3222, 2019. 2, 3, 4, 5,
9, 12, 13

[S17] Karen Simonyan and Andrew Zisserman. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations (ICLR), 2015. 5

[S18] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.
Instance normalization: The missing ingredient for fast styl-
ization. arXiv preprint arXiv:2004.10694, 2016. 1

[S19] Wei Wang, Ruiming Guo, Yapeng Tian, and Wenming
Yang. CFSNet: Toward a controllable feature space for im-
age restoration. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 4139–4148, 2019. 2, 3, 4, 5,
6

[S20] Xintao Wang, Ke Yu, Chao Dong, Xiaoou Tang, and
Chen Change Loy. Deep network interpolation for contin-
uous imagery effect transition. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1692–1701, 2019. 2

[S21] Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu,
Chao Dong, Yu Qiao, and Chen Change Loy. ESRGAN:
Enhanced super-resolution generative adversarial networks.
In European Conference on Computer Vision Workshops
(ECCV), pages 63–79, 2018. 5

[S22] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE Transactions on Image Process-
ing, 13(4):600–612, 2004. 5

[S23] Roman Zeyde, Michael Elad, and Matan Protter. On single
image scale-up using sparse-representations. In Curves and
Surfaces, pages 711–730, 2012. 10

[S24] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shecht-
man, and Oliver Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 586–595, 2018. 2

[S25] Mosaic Style Image. https://github.com/
Malikanhar/Neural- Style- Transfer/tree/
master/style%20image. [Accessed March 2023]. 5

[S26] Edtaonisl Style Image. https : / / github .
com / skq024 / Real - time - Coherent - Style -
Transfer-For-Videos/tree/master/styles.
[Accessed March 2023]. 5

[S27] Kandinsky Style Image. https://github.com/
zehuac/Neural-Style-Transfer-based-on-
CNN/tree/master/images. [Accessed March 2023].
5

http://r0k.us/graphics/kodak/
http://r0k.us/graphics/kodak/
https://github.com/Malikanhar/Neural-Style-Transfer/tree/master/style%20image
https://github.com/Malikanhar/Neural-Style-Transfer/tree/master/style%20image
https://github.com/Malikanhar/Neural-Style-Transfer/tree/master/style%20image
https://github.com/skq024/Real-time-Coherent-Style-Transfer-For-Videos/tree/master/styles
https://github.com/skq024/Real-time-Coherent-Style-Transfer-For-Videos/tree/master/styles
https://github.com/skq024/Real-time-Coherent-Style-Transfer-For-Videos/tree/master/styles
https://github.com/zehuac/Neural-Style-Transfer-based-on-CNN/tree/master/images
https://github.com/zehuac/Neural-Style-Transfer-based-on-CNN/tree/master/images
https://github.com/zehuac/Neural-Style-Transfer-based-on-CNN/tree/master/images

