
Supplemental Material
Transfer4D: A framework for frugal motion capture and deformation transfer

Contents

1. Description of benchmark datasets 1

2. Non-Rigid Registration (NRR) 1
2.1. NRR setup . . . . . . . . . . . . . . . . . . 1
2.2. Surface Deformation Model . . . . . . . . . 1
2.3. Surface Registration . . . . . . . . . . . . . 2
2.4. Optimization . . . . . . . . . . . . . . . . . 2
2.5. NRR Experiments . . . . . . . . . . . . . . 2
2.6. Limitations of NRR . . . . . . . . . . . . . 3

3. Skeletonization 3
3.1. Curve Skeleton Extraction . . . . . . . . . . 4
3.2. Splitting Clusters . . . . . . . . . . . . . . . 4
3.3. Skeletonization Experiments . . . . . . . . . 4
3.4. Skeleton embedding comparison . . . . . . . 5

4. Cost Comparison with Existing Techniques 6

5. Computation Cost 7

Introduction
To keep the overall manuscript self-contained, we include

additional details in the supplementary material. Video ex-
plaining our work and showcasing our results can be found at
5738.mp4. The source code for our pipeline can be found
in directory Code. Details of our setup and implementation
of the baselines can be found at: Code/README.md

1. Description of benchmark datasets
For hyperparameter-tuning and evaluating NRR and skele-

tonization, we use DeformingThings4D [24] dataset. It con-
tains 31 categories of animals and humans. Overall, it con-
tains 59 distinct animals (e.g. bear, dino, elk) and 67 hu-
manoids (e.g. prisoner, mannequin) performing. We sample
80 sequences from the test split provided by Lepard [9]. Each
animation contains between 12 and 150 frames (mean=47
frames). Depth videos are created using Blender’s Eevee
engine from distinct camera positions [24]. Unfortunately,
the dataset doesn’t provide texture or color information and

only depth can be estimated. All depth maps are rendered us-
ing the intrinsic parameters of Azure Kinect. Meshes for the
characters, gorilla, minotaur, centaur, duck
were sourced from TurboSquid.1

2. Non-Rigid Registration (NRR)
NRR extracts the temporal motion information, establish-

ing correspondences among subsequent frames.

2.1. NRR setup

Consider a single view depth camera setup that provides
a set of depth images, D = {Dt ∈ RH×W }, where t,H,W
represents timestep, height, and width of frames respec-
tively.2 We segment the object of interest based on the depth
values to obtain a binary image mask. We assume the camera
is stationary during the recording and camera intrinsic param-
eters K ∈ R3X3 are known. Using the camera parameters,
for every pixel u ∈ R2 in-depth image Dt is back-projected
to create the point cloud P = {pu}.

pu = Dt(ux, uy) ·K−1

ux

uy

1

 (1)

For a depth video of T frames, we choose one frame in
the video as the source S. An incomplete mesh MS =
{VS , FS} is obtained from the source depth image where
its vertices VS = PS and the faces FS are obtained by
connecting adjacent pixels if the distance between their as-
sociated vertices is less than a fixed threshold (0.05 in our
experiments).

2.2. Surface Deformation Model

To enforce spatial coherence, we represent the motion
field using an embedded deformation graph [18] G =
{VG, EG,RT

G, T T
G }. Here each node gj ∈ VG is equipped

with a time-varying rigid transformation, i.e. a rotation ma-
trix Rt

j ∈ R3×3 and translation vector T t
j for each timestep

1www.turbosquid.com
2We experiment using the synthetic datasets processed from Deform-

ingThings4D [24].

1

www.turbosquid.com


t. This provides a generalized solution to represent the de-
forming scene without using domain-specific methods like
SMPL [12], SMAL [26], or MANO [16] (designed for hu-
mans, quadrupeds, and hands respectively).

The incomplete mesh at source frame MS is used to cre-
ate the embedded graph. Erosion is performed to remove
outliers. Similar to [3], the nodes VG of the graph are gen-
erated by uniformly sampling from the mesh MS , while
ensuring σ-node coverage (each vertex in the point cloud
is at most σ distance from the nearest node in VG). The
graph edges EG connect nodes with overlapping influence.
The edge weights are computed using the geodesic distance
between the graph nodes. Each node can have a maximum
of 8 neighbours. The skinning weights WG(i, j) determines
the influence of graph node gj on vertex vi. It is defined via

WG(i, j) = αe−(∥vi−gj∥2
2)/(2σ

2
nc) (2)

where α is the normalization constant so that weights sum
to one, and the node coverage parameter σnc controls the
weightage of multiple graph nodes on the vertices. Inspired
by linear blend skinning, to enforce sparseness and faster
GPU computation each vertex is influenced by at most by 4
nodes, i.e. ∥WG(i, :)∥0 ≤ 4.

2.3. Surface Registration

Our first step is to obtain the trajectory of the vertices
of the incomplete mesh MS by aligning it to all the future
frames using non-rigid registration. The trajectory for each
vertex vi ∈ VS at timestep t ∈ T is computed using the
deformation graph as

Traj ti =

NG∑
j=0

WG(i, j)(Rt
j(vi − gj) + gj + T t

j ), (3)

The registration is performed using RANSAC and N-ICP
[7]. For each timestep t, the graph deformation parameters
{Rt

G, T t
G}, are estimated by optimising the following energy

function E(G):

E(G) = λcorrespEcorresp(G) + λsmoothEsmooth(G),

Ecorresp(G) =
∑

vi∈VS

∥Traj ti − P t
x∥22,

Esmooth(G) =
∑

(i,j)∈EG

∥Rt
i(gj − gi) + gi + T t

i − (gj + T t
j )∥22,

(4)
where P t

x is the closest point to Traj ti in the new point
cloud P t. In each iteration, K points are sampled from
VS and transformed using Eq. 3. The data term Ecorresp

seeks to align the incomplete mesh MS to P t. The as-rigid-
as-possible [17] constraint Esmooth enforces nearby graph
nodes to have similar transformations.

Method DIC ×10−3 ↓ IOU ↑
N-ICP [7] 5.90±4.56 0.90±0.06

Lepard [9] 9.53±8.80 0.61±0.23

N-ICP + Lepard 6.36±4.92 0.85±0.13

N-ICP + Lepard + Confidence 6.38±6.34 0.84±0.14

N-ICP + Lepard + OcclusionFusion [11] 6.41±6.42 0.84±0.14

Table 1. Performance scores across Non-Rigid-Registration vari-
ants

2.4. Optimization

Eq. (4) is optimised by stochastic gradient descent (SGD)
[5] for the non-convex optimisation using pytorchv1.11 [14].
To represent rotations we use lietorch [21]. It represents
rotation as an element of the SE(3) Lie group and performs
backpropagation in the tangent space of the group’s mani-
fold. Node coverage σnc is set to 0.05. The learning rate
is initialized to 6e−2 and exponentially decayed by 0.999
after each iteration. We run 100 iterations using chamfer
distance. K = 5000 points are sampled at each iteration
of SGD. (λcorresp, λarap) are set to (1000, 10). We use the
transformations estimated at the previous timestep t− 1 to
initialize registration at the current timestep t.

2.5. NRR Experiments

To evaluate our setup for non-rigid registration, we com-
pare our setup and incorporate other methods during NRR.
Table. 1 summarises our observations. We observe that N-
ICP results in the lowest depth inverse cost (DIC) and the
highest IOU. These two metrics are defined below.

Metrics: For each timestep we generate the depth im-
age D̂t ∈ RH×W using the deformed source mesh
Mt

S = {Trajt, FS}. We use the MeshRasterizer from
pytorch3Dv0.6 [15] to create the depth images. The depth
value of each pixel is calculated from the z-buffer during
rasterization. We report 2 metrics to evaluate our setup for
NRR.

• Depth Inverse Cost: To measure discrepancy in de-
formation, we evaluate the difference in the predicted
(D̂t) and input depth values (Dt). The background rep-
resents infinite depth. Silhouette is defined as pixels
with valid depth values.

DIC =

T∑
t

H∑
i

W∑
j

∥∥∥∥∥ 1

Dt[i, j]
− 1

D̂t[i, j]

∥∥∥∥∥
2

(5)

• IOU: To measure surface misalignment, we measure
the IOU (intersection over union) between the predicted
and input silhouette images, where:



ˆSilh
t
[i, j] =

{
1 if 1

D̂t[i,j]
> 0

0 otherwise

IOU =

T∑
t

ˆSilh
t
∩ Silht

ˆSilh
t
∪ Silht

(6)

Other methods:

• Lepard [9]: Lepard is used to in estimating scene flow
from the source and to the target point cloud, Lepard
uses a KP-FCN [22] backbone for feature extraction and
down-sampling. KP-FCN uses spherical convolution
to aggregate information across the point cloud. After
down-sampling the source and target point cloud, Lep-
ard uses 2 self-attention and 2 cross-attention blocks be-
tween the down-sampled source and target point cloud
to obtain a confidence map between the points. Corre-
spondences with confidence less than 0.1 are considered
invalid. These correspondences are then interpolated
using k-nearest neighbours to get the target position
of each source point. We run for 200 iterations us-
ing correspondence predicted by Lepard, followed by
100 iterations with RANSAC and N-ICP similar to our
setup.

• Correspondence confidence: Not all surface corre-
spondences from Lepard can be used as outliers have
to be reduced. Self-occlusion can also affect correspon-
dence. Although confidence values are predicted by
Lepard, they do not accurately represent outliers. We
obtain the initial correspondence using Lepard and in-
spired from [8], we also calculate the confidence score
based on cyclic consistency. For a point vi ∈ VS , the
confidence Confp is defined as:

SFi = Lepard(V ′, T ), SF ′
i = Lepard(V ′ + SF, V ′)

Confi = exp−∥SF−SF ′∥2/σconf

(7)
where SF , SF ′, Conf denote scene flow, scene flow
inverse (from target space to the source), and predic-
tive confidence respectively. σconf is set to 0.01. We
replace Ecorresp in Eq. (4) with:

Ecorresp(G) =
∑

vi∈VS

Confi∥Traj ti − P t
x∥22, (8)

Similarly to Lepard, we run for 200 iterations using con-
fidence calibrated correspondence followed by 100 iter-
ations with RANSAC and N-ICP similar to our setup.

• OcclusionFusion [11]: As occlusion adversely affects
motion tracking, we even attempt to incorporate Occlu-
sionFusion into NRR. It uses a LSTM-involved graph

neural network to predict the motion of the occluded re-
gion. Visible nodes are calculated from the confidence
score described above. We incorporate an additional
loss term EOcc defined as:

EOcc =

NG∑
j=0

wj∥T t
j − (T t−1

j + µi)∥22 (9)

where wj and µj are predicted by OcclusionFusion [11].
T t
j is the translation of the graph node j and timestep t.

λOcc is set to 1.0.

2.6. Limitations of NRR

We use the traditional setup of RANSAC and N-ICP [7]
for NRR and use its estimated trajectory for further steps
of our pipeline. This makes our setup susceptible to fail-
ure in case of large deformation between the source and
target frame. There exist other methods such as Lepard (for
improving correspondence prediction), cyclic-consistency
based predictive confidence, OcclusionFusion (adding addi-
tional constraints on the optimization) to handle large defor-
mations. However, we observe that, an auto-regressive setup
using standard N-ICP where the deformation parameters are
initialized using values estimated at previous timestep results
received lower in better scores on the DIC and IOU metrics
(see Tab. 1). This supports our assumption that the extent
of deformation between consecutive frames of the source
object to be low.

Figure 1. Failure case from non-rigid registration step.

A better strategy for reconstruction is employed by Dy-
namicFusion [13] where depth images are registered and
fused to simultaneously reconstruct the source object geom-
etry and estimate its warpfield. Unfortunately, we were not
able to reproduce the results provided by DynamicFusion.
Therefore, we do not use DynamicFusion during NRR. We
do encounter some cases where NRR fails, particularly mo-
tions with 180◦ rotations like spinning or turning such as
Fig. 1. We believe that incorporating dynamic volumetric in-
tegration methods like DynamicFusion as future work would
fix these artifacts.

3. Skeletonization
Algorithm 1 describes our skeletonization algorithm. The

input to our algorithm is the incomplete mesh MS =



Figure 2. Curve skeleton extraction: Notice that the extracted
joint position from Local separators [1] lies on the surface of the
incomplete mesh. Our optimization aligns the joint position to the
medial axis of the object.

{VS , FS} of the source object and its trajectory Traj ∈
RT×|VS |×3, where T is the number of time steps. The
output is a kinematic pose tree, i.e. a motion skeleton
MS = {JMS , BMS} where JMS is a set of joints in R3

and bones BMS are the edges connecting the joints, along
with its skeletal motion SM ∈ RT×|JMS |×3.

3.1. Curve Skeleton Extraction

We compute the curve skeleton from the incomplete
source mesh MS using the local separators method of
Bærentzen et al. [1].

Bærentzen et al.’s method places each node of the curve
skeleton at the centroid of its associated mesh vertices Si.
We replace this simple scheme for node placement with an
approach inspired by ROSA [20] to better handle incomplete
shapes, as follows. The optimal position of a node j∗i is
obtained as

j∗i = argmin
ji∈R3

∑
v∈Si

λcpp∥(ji − v)× n(v)∥22 + λeucl∥ji − v∥22

+λsmooth

∑
k∈N(i)

∥ji − jk∥22

(10)
where n(v) is the vertex normal for vertex v, N(i) are the
neighbours of node ji.

The first term enforces the node to lie near the medial sur-
face of the object by constraining the node to the intersection
of the separator’s vertex normals, also known as its closest
projection point (CPP). If only a fraction of the surface is
visible, the CCP cannot be accurately calculated. Hence we
also align each joint to the centroid of the separator. Lastly,
we spatially smooth the joint position by constraining nearby
joints to be close to one another. (λcpp, λeucl, λsmooth) are
set to 0.8, 0.2, 200.

Fig. 2 shows the result of the optimization on the bear
drinking example. The extracted joint position from local
separators [1] lies on the surface of the incomplete mesh.
Our optimization aligns the joint position to the medial axis
of the object.

3.2. Splitting Clusters

Fig. 3 shows the splitting procedure for the bear example.
esplit is set to 0.2 for all samples. At most, each curve will

Figure 3. Curve splitting procedure: To incorporate the motion
information, each curve of the extracted curve skeleton is split into
multiple bones.

be split thrice.

3.3. Skeletonization Experiments

Curve Skeleton Comparison: Fig. 4 compares our ap-
proach with different static skeleton extraction methods.
Since these methods do not incorporate motion information,
they produce temporally incoherent skeletons. We don’t
compare with Au et al [19] since it requires a complete wa-
tertight mesh for skeletonization. Although ROSA works on
incomplete mesh, it cannot accurately capture the structure
of the object. Notice, LS [1] struggles to find the accurate po-
sition of the joints. We overcome this drawback by aligning
the joints to the closest projection point of each local separa-
tor. We observe that Rignet [23] and point2skeleton [10] are
not able to generalize to incomplete mesh.
Skinning weights evaluation:

To evaluate the skeletonization algorithm, we cannot di-
rectly compare the computed skeleton with a ground truth
skeleton as the dataset does not contain such data. Instead,
we propose two geometric metrics to evaluate the quality
of the resulting articulated motion AM of the incomplete
source mesh.

• Point-Plane Distance (p2p): We compare AM with
the motion of the complete mesh sequence GT . For this,
we compute the average point-to-plane (p2p) distance
as

p2p =
1

TN

T∑
t=0

∑
v∈VS

∥n(GT t
x)(AM t

v−GT t
x)∥2 (11)

where x = argminx∈GT t ||AM t
v −GT t

x||2 is the clos-
est point in the ground truth mesh, T is the number of
time steps, and n(GT t

x) is the unit normal vector at the
closest point.

• Reconstruction Error (RE): We also can compare
AM with the trajectory Traj obtained from NRR. We
define the reconstruction error RE of the entire mesh
as

RE =

√√√√ 1

TN

T∑
t=0

∑
v∈VS

∥Trajtv −AM t
n∥22 (12)

where T is the number of time steps in the input se-
quence, and N is the number of vertices at each time
step.



Algorithm 1: Skeleton extraction of the source object.

1 Input: An incomplete mesh MS = {VS , FS} of the source object with trajectory Traj ∈ RT×|VS |×3, where T is
the number of time steps.

2 Output: A kinematic pose tree, i.e. a motion skeleton MS = {JMS , BMS} where JMS is a set of joints in R3

and bones BMS are the edges connecting the joints, along with its skeletal motion SM ∈ RT×|JMS |×3.
CS = LS(MS) /* Compute the Local Separators using [1] */
CS = merge_cycles(CS)
CS = prune_skeleton(CS, 3) /* Now, compute optimal j∗ using Eq. (10) */
j∗i = argminji∈R3

∑
v∈Si

λcpp∥(ji − v)× n(v)∥22 + λeucl∥ji − v∥22 + λsmooth

∑
k∈N(i) ∥ji − jk∥22

CS = connect_disjoint_components(CS)
// Initialization
JMS = CS .functional_nodes()
// Curve Splitting
for each split do

for b ∈ BMS do
{Rb, Tb} = Kabsch()

RC(i, k) =
1

T

∑T
t=1

∑
v∈Cik

∥Trajtv − (Rt
bv + T t

b )∥22

r∗ = argminr∈Cik
RC(i, r − 1) +RC(r, k)

ϵchange = 1− RC(i, r − 1) +RC(r, k)

RC(i, k)
if ϵchange > ϵsplit then

// Split Bone
JMS = JMS ∪ {jr∗}
BMS = BMS ∪ {(i, r), (r, k)} \ {(i, k)}

end
end

W, {(Rb, Tb), b ∈ BMS} = SSDR(MS , T raj)
AM t

v =
∑

b∈BMS
W (v, b) ∗ (Rt

bv + T t
b )

SM t
j = j +

∑
v∈Sj

(AM t
v − v)

3.4. Skeleton embedding comparison

Experiment setup: DeformingThings4D dataset contains
mesh motion sequences of various animals and humans. In
order to have a ground-truth target motion for evaluation, we
transfer motion obtained from the single-view depth video
back to the same complete mesh from which the video was
extracted. Thus the ideal result is to recover the original
motion of the complete mesh.
Metrics:: To evaluate the our skeletonization framework for
animation transfer, we report 3 metrics in the main paper.

• Percentage Joints Embedded: This metric measures
the percentage of joints from the source motion skeleton
SM that were successfully embedded into the target
mesh using Pinocchio [2].

PJE =
n(TS)

n(MS)
∗ 100 (13)

• Reconstruction Error: For a complete mesh CM =
VS , FS , we compare the re-targetted motion RM with
the original mesh sequence GrTraj ∈ RT×n(VS)×3.
We define the reconstruction error RE as

RE =

√√√√ 1

TN

T∑
t=0

∑
v∈VS

∥GrTrajtv −RM t
v∥22 (14)

where T is the number of time steps in the input se-
quence, and N is the number of vertices.

• Local Error Pose tests the reconstruction error after
rigidly aligning the re-targeted motion with the origi-
nal motion at each timestep. By removing the global
transformation (Rt

p, T r
t
p) we can observe whether the

local pose (deformation of arms, or movement of legs)
is accurately being re-targetted. This is similar to local



Figure 4. Comparison of skeleton extraction methods (namely, ROSA [20], RigNet [23], Point2Skeleton [10], Local Separators [1]) on
Elk(Death sequence) from DeformingThings4D [24]. Point2Skeleton outputs a skeleton mesh instead of a skeleton tree unlike skeleton
extracted from local separators that aligns best with the shape of the object. Hence, we choose local seperators as a first step for our skeleton
extraction.

Figure 5. Quantitative comparison of skeletonization with baselines,
Zhang et al. [25], SSDR [6], Neural Marionette [4] in terms of two
geometric metrics, reconstruction error and point-plane distance to
evaluate the quality of the resulting articulated motion AM of the
incomplete source mesh.

3D seen in human pose estimation papers.

LPE =

√√√√ 1

TN

T∑
t=0

∑
v∈VS

∥GrM t
v − (Rt

p ∗RM t
v + Trtp)∥22

(15)
where locally aligned re-targetted motion is obtained

by performing procrustes’ analysis between GrM t and
RM t

Failure cases: Fig. 6 shows a few failure cases of our al-
gorithm. These occur mainly because the approach depends
on the Pinocchio framework for skeletal embedding. The
failure in Fig. 6 (a) is due to large pose variations between
the source and target, and Fig. 6 (b) is due to a mismatch in
the global orientation of poses between source and target.

4. Cost Comparison with Existing Techniques

The existing professional motion capture techniques3 use
a complex setup of multiple cameras to record 3D positions
and actions of performers, which in turn are used to animate
the digital character. The volume of animation data gener-
ated at low latency, and complex movement capture comes at
a prohibitive cost for small production houses. Some of them
include Motion Capture NYC4 where the rent cost ranges
from $4, 000 a day + $20 a second on top. Meta Motion
5 sells the motion capture systems for price range between
$800 to $250000. Marker-less motion capture the software
costs $99 and the system costs $2500 and the mocap suit

3https : / / studio . knightlab . com / results /
oscillations-vr/oscillations-mocap-comparison/

4http://www.motioncapturenyc.com/cost
5https://metamotion.com/FAQ/prices.html

https://studio.knightlab.com/results/oscillations-vr/oscillations-mocap-comparison/
https://studio.knightlab.com/results/oscillations-vr/oscillations-mocap-comparison/
http://www.motioncapturenyc.com/cost
https://metamotion.com/FAQ/prices.html


Figure 6. Transfer4D failure cases from motion retargeting. Note: mainly because the approach depends on the Pinocchio framework for
skeletal embedding.

Step Time(seconds) CPU (GB) GPU (GB)

NRR 3629.71 10.54 5.37
Skeletonization 264.52 8.67 0.51

Skeleton Embedding 45.04 0.9 -
Motion Retargeting 16.15 0.67 -

Table 2. Computation cost of our pipeline on the bear to cow
example.

alone costs $2500 6. High FPS Camera costs between $500
to $500. To facilitate democratization, we utilize the depth
video streams that can be used to deform the corresponding
target meshes. The potential benefits are to reduce in the
turnaround time for the animator, and a reduction in the cost
of motion capture by a huge factor with some tradeoff in
high fidelity reconstruction achieved by sophisticated mo-
tion capture systems with markers. A Kinect V.2 would cost
∼ $499 and the newer version Azure Kinect is priced at $300.
Other frugal alternatives include depth cameras with Intel
Real Sense priced at $200 7. Our solution would just need
a single-view depth camera and target mesh without a rig
to animate, meaning the rough expense would be around
$100− 300.

5. Computation Cost

We give a ballpark estimate of the cost of using our
pipeline using the “bear (drinking)” example. Tab. 2 high-
lights the time, RAM usage, and GPU memory usage taken
by each step. The video contains 120 frames. The extracted
incomplete mesh contains 70,240 vertices and 138,300 faces.
The embedded graph contains 903 nodes. The motion skele-
ton contains 22 joints. The target mesh (cow) contains
21,158 vertices and 42,312 faces.

6https://www.rokoko.com/en/products/smartsuit-
pro

7https://store.intelrealsense.com/buy- intel-
realsense-depth-camera-d435i.html

References
[1] Andreas Bærentzen and Eva Rotenberg. Skeletonization via

local separators. ACM Trans. Graph., 40(5), sep 2021. 4, 5, 6
[2] Ilya Baran and Jovan Popović. Automatic rigging and anima-

tion of 3d characters. ACM Trans. Graph., 26(3):72–es, July
2007. 5

[3] Aljaz Bozic, Pablo Palafox, Michael Zollöfer, Angela Dai,
Justus Thies, and Matthias Nießner. Neural non-rigid tracking.
2020. 2

[4] Bae Jinseok, Jang Hojun, Min Cheol-Hui, Choi Hyungun, and
Young Min Kim. Neural marionette: Unsupervised learning
of motion skeleton and latent dynamics from volumetric video.
In Proceedings of the 36th AAAI Conference on Artificial
Intelligence (AAAI 2022), February 2022. 6

[5] J. Kiefer and Jacob Wolfowitz. Stochastic estimation of the
maximum of a regression function. Annals of Mathematical
Statistics, 23:462–466, 1952. 2

[6] Binh Huy Le and Zhigang Deng. Smooth skinning decom-
position with rigid bones. ACM Trans. Graph., 31(6), 2012.
6

[7] Hao Li, Robert W. Sumner, and Mark Pauly. Global corre-
spondence optimization for non-rigid registration of depth
scans. In Proceedings of the Symposium on Geometry Pro-
cessing, SGP ’08, page 1421–1430, Goslar, DEU, 2008. Eu-
rographics Association. 2, 3

[8] Xueqian Li, Jhony Kaesemodel Pontes, and Simon Lucey.
Neural scene flow prior. Advances in Neural Information
Processing Systems, 34, 2021. 3

[9] Yang Li and Tatsuya Harada. Lepard: Learning partial point
cloud matching in rigid and deformable scenes. IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2022. 1, 2, 3

[10] Cheng Lin, Changjian Li, Yuan Liu, Nenglun Chen, Yi-King
Choi, and Wenping Wang. Point2skeleton: Learning skele-
tal representations from point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4277–4286, June 2021. 4, 6

[11] Wenbin Lin, Chengwei Zheng, Jun-Hai Yong, and Feng
Xu. Occlusionfusion: Occlusion-aware motion estimation
for real-time dynamic 3d reconstruction. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1736–1745, June 2022. 2, 3

https://www.rokoko.com/en/products/smartsuit-pro
https://www.rokoko.com/en/products/smartsuit-pro
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d435i.html
https://store.intelrealsense.com/buy-intel-realsense-depth-camera-d435i.html


[12] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard
Pons-Moll, and Michael J Black. Smpl: A skinned multi-
person linear model. ACM transactions on graphics (TOG),
34(6):1–16, 2015. 2

[13] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion:
Reconstruction and tracking of non-rigid scenes in real-time.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 343–352, 2015. 3

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems 32, pages
8024–8035. Curran Associates, Inc., 2019. 2

[15] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-
lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia
Gkioxari. Accelerating 3d deep learning with pytorch3d.
arXiv:2007.08501, 2020. 2

[16] Javier Romero, Dimitrios Tzionas, and Michael J. Black.
Embodied hands: Modeling and capturing hands and bodies
together. ACM Transactions on Graphics, (Proc. SIGGRAPH
Asia), 36(6), Nov. 2017. 2

[17] Olga Sorkine and Marc Alexa. As-Rigid-As-Possible Surface
Modeling. In Alexander Belyaev and Michael Garland, ed-
itors, Geometry Processing. The Eurographics Association,
2007. 2

[18] Robert W. Sumner, Johannes Schmid, and Mark Pauly. Em-
bedded deformation for shape manipulation. ACM Trans.
Graph., 26(3):80–es, jul 2007. 1

[19] Andrea Tagliasacchi, Ibraheem Alhashim, Matt Olson, and
Hao Zhang. Mean curvature skeletons. Comput. Graph.
Forum, 2012. 4

[20] Andrea Tagliasacchi, Hao Zhang, and Daniel Cohen-Or.
Curve skeleton extraction from incomplete point cloud. ACM
Trans. Graph., 28(3), jul 2009. 4, 6

[21] Zachary Teed and Jia Deng. Tangent space backpropa-
gation for 3d transformation groups. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021. 2

[22] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J.
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. Proceedings of the IEEE International Confer-
ence on Computer Vision, 2019. 3

[23] Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth,
and Karan Singh. Rignet: Neural rigging for articulated
characters. ACM Trans. on Graphics, 39, 2020. 4, 6

[24] Li Yang, Takehara Hikari, Taketomi Takafumi, Zheng Bo,
and Matthias Nießner. 4dcomplete: Non-rigid motion esti-
mation beyond the observable surface. IEEE International
Conference on Computer Vision (ICCV), 2021. 1, 6

[25] Quanshi Zhang, Xuan Song, Xiaowei Shao, Ryosuke
Shibasaki, and Huijing Zhao. Unsupervised skeleton ex-
traction and motion capture from 3d deformable matching.

Neurocomputing, 100:170 – 182, 2013. Special issue: Be-
haviours in video. 6

[26] Silvia Zuffi, Angjoo Kanazawa, David Jacobs, and Michael J.
Black. 3D menagerie: Modeling the 3D shape and pose of
animals. In IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), July 2017. 2


	. Description of benchmark datasets
	. Non-Rigid Registration (NRR)
	. NRR setup
	. Surface Deformation Model
	. Surface Registration
	. Optimization
	. NRR Experiments
	. Limitations of NRR

	. Skeletonization
	. Curve Skeleton Extraction
	. Splitting Clusters
	. Skeletonization Experiments
	. Skeleton embedding comparison

	. Cost Comparison with Existing Techniques
	. Computation Cost

