This supplementary material contains the following four
sections. In Section A, we show that point-to-pixel level
contrastive losses like PPKT [17] can also benefit from
the proposed semantically tolerant loss. In Section B, we
visualize the class imbalance in nuScenes dataset on the
superpixel level and then report the per-class fine-tuning
performance of SLidR and ST-SLidR represenations on
nuscenes dataset. In Section C, we visualize the superpixel-
to-superpixel similarity across a range of 2D self-supervised
pretrained models. Finally, In Section D, we discuss the
limitations of ST-SLidR.

A. Semantically Tolerant PPKT

We conduct an experiment to evaluate whether pixel-to-
pixel semantic similarity can be used to improve the qual-
ity of learned representations of pixel-to-point contrastive
losses like PPKT [17]. The main challenge of utilizing
pixel-to-pixel similarity to infer false negative pixels, is the
high level of noise compared to superpixel-to-superpixel
similarity. Starting with the implementation of PPKT pro-
vided by SLidR’s code base [21], we implement Ly,,,, on
the pixel level. We run two sets of experiments using 4096
and 8192 point-pixel pairs per batch. We use a batch size
of 16. Here, we report the average of 3 runs for each ex-
periment. In Table 7, we observe that semantically tolerant
PPKT loss provides a modest improvement over PPKT [17].
We also experimented with balancing PPKT using aggre-
gate pixel-to-pixels similarity but due to the high level of
noise in pixel level similarity, we did not observe any sig-
nificant improvement.

B. Class Imbalance
B.1. Superpixel Class Imbalance

In Figure 4, we show the distribution of classes in the
nuScenes [6] dataset at the superpixel level. To determine
the class of a superpixel, we first project the LiDAR point
cloud onto the 2D image. The class of a superpixel is
given by ground truth LiDAR point-wise labels of the points
within the superpixel of interest. Specifically, its class is the
same as its LiDAR points’ label. In the cases where Li-
DAR points of multiple classes occur within a superpixel,
we assign the class of the superpixel to be the mode of the
points’ LiDAR labels. We exclude the superpixels with-
out LiDAR points as they are not used in pretraining. Note
that the ~others” category on the pie chart includes movable
objects such as traffic cones and barriers. We observe that
only 8.9% of the superpixels cover moving objects like ve-
hicles and pedestrians, while a large portion of the superpix-
els correspond to static classes like driveable surface, veg-
etation, and manmade. Thus, the pretraining loss of PPKT
and SLidR is dominated by gradients from over-represented
classes. It is important to note that accurately segmenting

Number of nuScenes
Method Su;ln 612: Lin. Prob  Finetune
p 100% 1%
PPKT 35.90 37.52
ST-PPKT 4096 36.70 38.32
Improvement +0.80 +0.80
PPKT 2192 35.57 38.01
ST-PPKT 36.64 38.60
Improvement +1.07 +0.59

Table 7. Pixel-to-Pixel feature similarity used to remove the clos-
est k nearest negative pixels identified as false negatives. Here, we
show results for 4096 and 8192 pixel-point contrastive pairs per
batch. We report semantic segmentation results on nuScenes.

moving objects is critical for autonomous driving agents as
they share the same environment and their actions will af-
fect the agent. ST-SLidR specifically improves the quality
of representations of minority classes which includes mov-
ing objects (see Table 4 and Table 8).
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Figure 4. Class distribution of nuScenes dataset at superpixel level.

B.2. Per-class Performance

Table 8 shows the average per-class performance fine-
tuning SLidR and ST-SLidR on 1% of nuscenes dataset.
We observe that 3D representations learned by ST-SLidR
significantly improve performance on minority classes like
moving objects. For instance, we see an improvement of
+5.5% IoU on motorcyclists which consists of less than
0.04% of the superpixels, +3.7% IoU on pedestrians which
consists of 0.25% of the superpixels and 5.7% IoU on trucks
which consists of 2.11% of the superpixels.
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Random 0.0 0.0 81 650 0.1 66 21.0 90 93 258 895 148 417 487 724 733 303
SLidR 0.0 1.8 154 731 19 199 472 17.1 145 345 920 271 536 61.0 798 823 388
ST-SLidR 00 27 160 745 32 254 509 200 177 402 920 30.7 542 61.1 805 829 407
Improvement +0.0 +0.8 +0.6 +1.4 +1.3 +55 +37 +2.9 431 +57 400 +36 +06 +0.0 +0.7 +06 +1.9

Table 8. Per-class 3D semantic segmentation using 1% of labelled data for fine-tuning on nuscenes dataset on official validation set. We
report the mean performance of 3 pretrained SLidR and ST-SLidR models.
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Figure 5. Superpixel-to-superpixel cosine similarity for an entire scene consisting of 6 cameras. Here, we show the similarity estimated

using different self-supervised 2D pretrained models.

C. Superpixel Semantic Similarity

In Figure 5, we use pretrained weights from multiple
2D SSL frameworks to extract superpixel features from the
6 cameras covering a single scene from nuscenes dataset.
Then, we compute the superpixel-to-superpixel cosine sim-
ilarity ranging from 0.0 (black) to 1.0 (white). Figure 5
shows that 2D SSL frameworks learn different representa-
tions, however, we can see that similarity patterns appear
to be consistent across different frameworks. ST-SLidR as-
sumes that the value of cosine similarity can be different
across different pretrained models, but the relative of order

of similarity with respect to an anchor is more consistent.
This is demonstrated in Table 2, where ST-SLidR provides
significant gain over SLidR across multiple 2D pretrained
models.

D. Limitations

D.1. Fixed Number of Negative Samples

We address the issue of contrasting semantically similar
point and image regions by excluding a subset of the clos-
est negative samples to the anchor from the pool of nega-
tive samples. Since the K nearest neighbours are excluded,



Figure 6. Ground truth (left) and ST-SLidR (right) segmentation results on the nuScenes dataset. ST-SLidR is finetuned on 1% of the data.

a fixed number of false negative samples are identified for
each anchor. However, Figure 2 shows that the number of
semantically similar samples greatly vary based on the se-
mantic class of the anchor. For instance, the number of sam-
ples similar to a road or a vegetation anchor is much larger
than the number of samples similar to a car or a pedestrian
anchor. This is mainly due to the severe class imbalance in
autonomous driving datasets. A potential solution for fu-
ture work is to design an adaptive K nearest neigbour loss,
where the value of K is a function of the aggregate sample-
to-samples similarity. Over-represented anchors are simi-
lar to many negative samples in a batch and therefore the
value of K should be higher for these anchors than under-
represented anchors.

D.2. Frozen Image Encoder

Authors in SLidR [21] observe that backpropagating gra-
dients to the image encoder can result in degenerate solu-
tions, where the contrastive loss is easily minimized without
learning useful 3D representations for downstream tasks.
One of the advantages of updating the image encoder pa-
rameters initialized by ImageNet pretrained weights, is to
learn optimal 2D features for autonomous driving scenes.
To prevent degenerate solutions, the image encoder can be
first initialized with ImageNet pretrained weights, and any
2D SSL framework can be used to learn optimal 2D rep-
resentations for autonomous driving images. Finally, the
image encoder is frozen and then ST-SLidR can be used to
transfer knowledge from the 2D features to the point cloud
encoder.
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