
This supplementary material contains the following four

sections. In Section A, we show that point-to-pixel level

contrastive losses like PPKT [17] can also benefit from

the proposed semantically tolerant loss. In Section B, we

visualize the class imbalance in nuScenes dataset on the

superpixel level and then report the per-class fine-tuning

performance of SLidR and ST-SLidR represenations on

nuscenes dataset. In Section C, we visualize the superpixel-

to-superpixel similarity across a range of 2D self-supervised

pretrained models. Finally, In Section D, we discuss the

limitations of ST-SLidR.

A. Semantically Tolerant PPKT

We conduct an experiment to evaluate whether pixel-to-

pixel semantic similarity can be used to improve the qual-

ity of learned representations of pixel-to-point contrastive

losses like PPKT [17]. The main challenge of utilizing

pixel-to-pixel similarity to infer false negative pixels, is the

high level of noise compared to superpixel-to-superpixel

similarity. Starting with the implementation of PPKT pro-

vided by SLidR’s code base [21], we implement Lknn on

the pixel level. We run two sets of experiments using 4096

and 8192 point-pixel pairs per batch. We use a batch size

of 16. Here, we report the average of 3 runs for each ex-

periment. In Table 7, we observe that semantically tolerant

PPKT loss provides a modest improvement over PPKT [17].

We also experimented with balancing PPKT using aggre-

gate pixel-to-pixels similarity but due to the high level of

noise in pixel level similarity, we did not observe any sig-

nificant improvement.

B. Class Imbalance

B.1. Superpixel Class Imbalance

In Figure 4, we show the distribution of classes in the

nuScenes [6] dataset at the superpixel level. To determine

the class of a superpixel, we first project the LiDAR point

cloud onto the 2D image. The class of a superpixel is

given by ground truth LiDAR point-wise labels of the points

within the superpixel of interest. Specifically, its class is the

same as its LiDAR points’ label. In the cases where Li-

DAR points of multiple classes occur within a superpixel,

we assign the class of the superpixel to be the mode of the

points’ LiDAR labels. We exclude the superpixels with-

out LiDAR points as they are not used in pretraining. Note

that the ºothersº category on the pie chart includes movable

objects such as traffic cones and barriers. We observe that

only 8.9% of the superpixels cover moving objects like ve-

hicles and pedestrians, while a large portion of the superpix-

els correspond to static classes like driveable surface, veg-

etation, and manmade. Thus, the pretraining loss of PPKT

and SLidR is dominated by gradients from over-represented

classes. It is important to note that accurately segmenting

Method
Number of

Samples

nuScenes

Lin. Prob

100%

Finetune

1%

PPKT
4096

35.90 37.52

ST-PPKT 36.70 38.32

Improvement +0.80 +0.80

PPKT
8192

35.57 38.01

ST-PPKT 36.64 38.60

Improvement +1.07 +0.59

Table 7. Pixel-to-Pixel feature similarity used to remove the clos-

est k nearest negative pixels identified as false negatives. Here, we

show results for 4096 and 8192 pixel-point contrastive pairs per

batch. We report semantic segmentation results on nuScenes.

moving objects is critical for autonomous driving agents as

they share the same environment and their actions will af-

fect the agent. ST-SLidR specifically improves the quality

of representations of minority classes which includes mov-

ing objects (see Table 4 and Table 8).

Figure 4. Class distribution of nuScenes dataset at superpixel level.

B.2. Per-class Performance

Table 8 shows the average per-class performance fine-

tuning SLidR and ST-SLidR on 1% of nuscenes dataset.

We observe that 3D representations learned by ST-SLidR

significantly improve performance on minority classes like

moving objects. For instance, we see an improvement of

+5.5% IoU on motorcyclists which consists of less than

0.04% of the superpixels, +3.7% IoU on pedestrians which

consists of 0.25% of the superpixels and 5.7% IoU on trucks

which consists of 2.11% of the superpixels.
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Random 0.0 0.0 8.1 65.0 0.1 6.6 21.0 9.0 9.3 25.8 89.5 14.8 41.7 48.7 72.4 73.3 30.3

SLidR 0.0 1.8 15.4 73.1 1.9 19.9 47.2 17.1 14.5 34.5 92.0 27.1 53.6 61.0 79.8 82.3 38.8

ST-SLidR 0.0 2.7 16.0 74.5 3.2 25.4 50.9 20.0 17.7 40.2 92.0 30.7 54.2 61.1 80.5 82.9 40.7

Improvement +0.0 +0.8 +0.6 +1.4 +1.3 +5.5 +3.7 +2.9 +3.1 +5.7 +0.0 +3.6 +0.6 +0.0 +0.7 +0.6 +1.9

Table 8. Per-class 3D semantic segmentation using 1% of labelled data for fine-tuning on nuscenes dataset on official validation set. We

report the mean performance of 3 pretrained SLidR and ST-SLidR models.

Figure 5. Superpixel-to-superpixel cosine similarity for an entire scene consisting of 6 cameras. Here, we show the similarity estimated

using different self-supervised 2D pretrained models.

C. Superpixel Semantic Similarity

In Figure 5, we use pretrained weights from multiple

2D SSL frameworks to extract superpixel features from the

6 cameras covering a single scene from nuscenes dataset.

Then, we compute the superpixel-to-superpixel cosine sim-

ilarity ranging from 0.0 (black) to 1.0 (white). Figure 5

shows that 2D SSL frameworks learn different representa-

tions, however, we can see that similarity patterns appear

to be consistent across different frameworks. ST-SLidR as-

sumes that the value of cosine similarity can be different

across different pretrained models, but the relative of order

of similarity with respect to an anchor is more consistent.

This is demonstrated in Table 2, where ST-SLidR provides

significant gain over SLidR across multiple 2D pretrained

models.

D. Limitations

D.1. Fixed Number of Negative Samples

We address the issue of contrasting semantically similar

point and image regions by excluding a subset of the clos-

est negative samples to the anchor from the pool of nega-

tive samples. Since the K nearest neighbours are excluded,



Figure 6. Ground truth (left) and ST-SLidR (right) segmentation results on the nuScenes dataset. ST-SLidR is finetuned on 1% of the data.

a fixed number of false negative samples are identified for

each anchor. However, Figure 2 shows that the number of

semantically similar samples greatly vary based on the se-

mantic class of the anchor. For instance, the number of sam-

ples similar to a road or a vegetation anchor is much larger

than the number of samples similar to a car or a pedestrian

anchor. This is mainly due to the severe class imbalance in

autonomous driving datasets. A potential solution for fu-

ture work is to design an adaptive K nearest neigbour loss,

where the value of K is a function of the aggregate sample-

to-samples similarity. Over-represented anchors are simi-

lar to many negative samples in a batch and therefore the

value of K should be higher for these anchors than under-

represented anchors.

D.2. Frozen Image Encoder

Authors in SLidR [21] observe that backpropagating gra-

dients to the image encoder can result in degenerate solu-

tions, where the contrastive loss is easily minimized without

learning useful 3D representations for downstream tasks.

One of the advantages of updating the image encoder pa-

rameters initialized by ImageNet pretrained weights, is to

learn optimal 2D features for autonomous driving scenes.

To prevent degenerate solutions, the image encoder can be

first initialized with ImageNet pretrained weights, and any

2D SSL framework can be used to learn optimal 2D rep-

resentations for autonomous driving images. Finally, the

image encoder is frozen and then ST-SLidR can be used to

transfer knowledge from the 2D features to the point cloud

encoder.


