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In the supplementary material, we first introduce more
details about the calculation of confusion density (Sec. 1)
and the evaluation metrics (Sec. 4.1). Then we clarify how
to select reference points for referential correlation in the re-
liable pixel aggregation module (Sec. 3.2). Furthermore, we
perform cross-domain transfer experiments to quantify the
effectiveness of DualRel. Finally, we show more qualitative
results including the reliability of prototypes (Sec. 4.5) and
activation maps.

1. More on Confusion Density and Metrics
In this section, we provide more details about the calcu-

lation of confusion density (Fig. 1 in Sec. 1) and the evalu-
ation metrics (Sec. 4.1) including DSC and JAC.

1.1. Calculation of Confusion Density

To further demonstrate the gap between mitochondrial
images and natural images as shown in Fig. 1, we sepa-
rately compute the confusion density of these two types
of images derived from the same method (i.e., CPS [2]),
which employs pixel-level consistency regularization. In
specific, we denote the predicted segmentation mask as Ỹ,
where each position (i, j) contains a pair of foreground-
background probability, that is, Ỹi,j = (p

f
, p

b
). We define

confusion (cf ) as the inverse confidence of the prediction
with respect to the ground truth Y ∈ {0, 1}H×W ,

cfi,j =

{
1− p

b
, if Yi,j = 0

1− p
f
, if Yi,j = 1

, (1)

where i = 1, 2, ...,H, j = 1, 2, ...,W . In this way, we can
obtain the confusion density ρ

cf
which represents the ex-
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pected confusion per pixel, formulated as

ρ
cf

=
1

H ×W

H∑
i=1

W∑
j=1

cfi,j . (2)

1.2. Calculation of Evaluation Metrics

To evaluate the accuracy of segmentation in our exper-
iments, we adopt Dice similarity coefficient (DSC) and
Jaccard-index coefficient (JAC), as described in Sec 4.1.
Metric formulations are as follows:

JAC =
|Ŷ ∩Y|
|Ŷ ∪Y|

× 100%, (3)

DSC =
2× |Ŷ ∩Y|
|Ŷ|+ |Y|

× 100%, (4)

where Ŷ is the hard prediction of the network given an im-
age, Y is the corresponding ground truth.

2. Selection of Reference Points
In this section, we describe in detail how to obtain ref-

erence points in Sec. 3.2, aiming to establish the referential
correlation for rectifying the direct pairwise correlation. In-
spired by human behavior which moves frequently accessed
or studied patterns to a reliable reference event store for
comparison with newly seen things, we pick reliable ref-
erence points from feature sequence X̃ ∈ Rhw×C with high
usage. In specific, we define and calculate the total contri-
bution ui of each pixel with regard to all the K prototypes,
formulated as

ui =

K∑
k=1

sk,i, (5)

where sk,i denotes the pairwise correlation between the k-
th prototype and the i-th pixel. Then we select the top-N
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Figure 7. The visualization of the reliability of prototypes in constructing prototype-level consistency regularization. Larger weights are
assigned to the more reliable prototypes.

Table 6. Cross-domain quantitative results of state-of-the-art
methods trained on Mito-R [7] but tested on Lucchi [4] and Luc-
chi++ [1] dataset under different partition protocols. The fractions
denote the percentage of labeled data used for training, followed
by the actual number of mitochondrial images.

1/32 (12) 1/16 (25) 1/8 (50) 1/2 (200)

Method JAC DSC JAC DSC JAC DSC JAC DSC

Lucchi

MT[NIPS17] [6] 41.37 57.21 42.84 58.66 49.44 65.35 58.25 71.87
CCT[CVPR20] [5] 43.81 60.01 45.54 62.40 51.72 67.95 64.97 78.12
GCT[ECCV20] [3] 46.53 62.62 48.41 65.52 54.97 71.31 68.04 81.92
CPS[CVPR21] [2] 49.62 64.89 51.59 67.48 59.52 73.78 73.32 84.40

DualRel 56.62 70.59 58.87 73.41 67.91 80.26 79.37 88.29

Lucchi++

MT[NIPS17] [6] 38.44 53.15 39.98 54.46 46.91 60.72 55.16 66.78
CCT[CVPR20] [5] 40.00 54.84 42.82 56.97 48.31 62.04 61.22 71.92
GCT[ECCV20] [3] 43.85 59.01 45.83 61.84 51.25 67.49 65.77 77.20
CPS[CVPR21] [2] 46.38 61.84 47.32 63.88 56.47 71.53 67.05 80.07

DualRel 53.92 68.11 55.01 70.36 65.64 78.78 72.93 84.16

pixels with the largest contribution (i.e., usage) as reference
points X̃R ∈ RN×C .

3. Cross-Domain Transfer Experiments
In this section, we perform cross-domain transfer exper-

iments where the model is trained on Mito-R or Mito-H [7]
dataset, but is tested on Lucchi [4] and Lucchi++ [1] dataset.
This experimental setting enables greater challenge with a
large domain gap to avoid evaluation overfitting caused by
similar slices of the same domain (i.e., the same dataset),
and enables better measurement of the knowledge transfer
ability of different methods.

As shown in Tab. 6, our DualRel demonstrates the supe-
riority over other methods and shows absolute performance
gains of 8.39%/6.48% in JAC/DSC under 1/8 partition, and
6.05%/3.89% in JAC/DSC under 1/2 partition over the best

Table 7. Cross-domain quantitative results of state-of-the-art
methods trained on Mito-H [7] but tested on Lucchi [4] and Luc-
chi++ [1] dataset under different partition protocols. The fractions
denote the percentage of labeled data used for training, followed
by the actual number of mitochondrial images.

1/32 (12) 1/16 (25) 1/8 (50) 1/2 (200)

Method JAC DSC JAC DSC JAC DSC JAC DSC

Lucchi

MT[NIPS17] [6] 29.94 46.30 30.52 46.99 33.44 49.73 43.59 60.32
CCT[CVPR20] [5] 32.39 48.72 33.10 49.51 36.12 52.32 45.60 62.16
GCT[ECCV20] [3] 42.08 58.62 43.14 59.57 47.07 62.94 55.10 66.57
CPS[CVPR21] [2] 44.87 60.74 46.00 61.73 50.20 65.23 58.75 72.62

DualRel 51.27 67.43 52.57 68.53 57.36 72.41 62.13 76.36

Lucchi++

MT[NIPS17] [6] 35.85 52.92 37.52 53.46 38.34 54.67 48.87 65.13
CCT[CVPR20] [5] 35.30 52.96 36.95 53.84 37.75 54.71 49.10 65.48
GCT[ECCV20] [3] 43.97 60.45 45.18 61.55 45.97 62.39 49.91 65.78
CPS[CVPR21] [2] 48.65 65.66 50.44 66.59 52.14 67.12 59.49 72.18

DualRel 55.93 71.33 57.48 72.63 58.26 73.15 63.74 77.56

method (i.e., CPS [2]). Similarly, Tab. 7 shows that our
method consistently surpasses all the competitors under all
partition protocols (e.g., 7.54%/6.27% in JAC/DSC under
1/32 partition). This indicates that our method, compared to
other methods directly employing pixel-level supervision,
can effectively absorb reliable pixels which provide more
transferable semantic information across different domains
by constructing robust prototype-level consistency regular-
ization. Furthermore, the reliability-aware consistency loss
in reliable prototype selection module allows to customize
the reliability of prototypes for any image from the new do-
main. Therefore, our model can alleviate the domain gap
and have well cross-domain generalization.



4. More Qualitative Results
In this section, we show more qualitative results includ-

ing the reliability of the prototypes corresponding to Fig. 5,
and the diverse activation maps.

4.1. More Visualization of Reliability

To evaluate the effect of the RPrS, we visualize the relia-
bility of more prototypes as a complement to Fig. 5. We can
see that the different prototypes focus on significant distinct
areas. Those prototypes whose activation regions are con-
centrated at the boundary have a lower reliability, which are
in line with the core intention of our design. Besides, the
high consistency between the reliability of prototypes and
the corresponding activation regions indicates the effective-
ness of our paradigm of implicitly learn the reliability in a
data-driven way.

4.2. Visualization of Activation Maps

Fig. 8 visualizes the diverse activation maps, which are
successfully partitioned by prototypes into different seman-
tic patterns in an adaptive manner. For example, the 2nd

activation map highlighted by the background prototype (in
the second row) mainly focuses on the boundaries while the
3rd activation map mainly concentrates on the parts of the
background. This proves that our diversity loss can pre-
vent the prototypes from focusing on similar local seman-
tic clues. In this way, diverse prototypes can capture mi-
tochondria variations to further evaluate the reliability of
prototypes in constructing prototype-level consistency reg-
ularization, and fuse with each other for more precise seg-
mentation.
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Figure 8. Visualization of the diverse activation maps highlighted
by prototypes. As we can see, these prototypes mainly focus on
specific mitochondrial semantic cues, such as boundaries, parts of
the foreground, and parts of the background.
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