NIRVANA: Neural Implicit Representations of Videos with Adaptive Networks
and Autoregressive Patch-wise Modeling: Supplementary Material

A. Additional Implementation Details
A.1. NeRV

We use the NeRV-L config from the original paper. The
model takes in positional embedding of time coordinate as
input. We set the number of sine levels to 80 and base value
to 1.25. The hidden dimension of the 2-layer MLP in the
beginning is set to 1024, with 128 output channels and an
8% channel expansion for the first NeRV Block. We stack
5-NeRV blocks with upscale factors of {5, 3, 2, 2,2} for HD
version and an additional block with 2x upsampling for the
4K version. Following the standard training schedule, we
use cosine learning rate schedule starting with 5e =%, with
a warmup of 0.2. We use the combination of L1 and SSIM
loss and train the model with a batch size of 1, as mentioned
in the paper.

A.2. Entropy Loss and Weight Quantization

We follow the works of [|6,8] for performing model com-
pression with small variations. We represent our MLP layer
weights as W1, W, ..., W, for L layers with the [layer
weight matrix W; € RO */t having a shape O; x I; consist-
ing of continuous values. For each weight matrix, we main-
tain a corresponding flattened latent quantized representa-
tion vector W, € ZO!i. W, consists of integer values for
each corresponding element in W;. For ease of notation,
we drop the subscript .

We then maintain decoders f,(.) parameterized by pa-
rameters ¢. The weight matrix W is then obtained from the
quantized weights W as W = f¢(ﬁv/'). Prior works use
matrices or vectors to represent the weight decoders while
we use a single scalar ¢ as a parameter of the decoder. The
weight matrix is thus simply, W = reshape(qﬁﬁvf), where
the scale parameter ¢ is multiplied with individual values
of W. We make the scale parameter learnable by pass-
ing gradients. Thus, it effectively controls the bit width of
the weight matrix. We maintain separate decoders for each
layer of the MLP.

To make the network fully differentiable, we maintain
continuous surrogates W for the discrete latents W. Dur-
ing training, we simply round the surrogates to their nearest

integer to obtain the discrete latents which are then passed
to the decoder. We make the rounding operation differen-
tiable using the straight-through estimator [3]] to pass the
gradients from WitoW.

To reduce the entropy of the quantized latents, we use
probability models from [2]]. For each continuous surrogate
‘//‘\/, we maintain probability models ¢y (.) parameterized by
6 which output the CDF of the latent distributions. Similar
to prior works, we use uniform noise n ~ U (—1,3) as a
substitute for quantization. The entropy of the model can
now be minimized by minimizing the self-information I as
follows:

(W) = —logy(ca(W +n)). (1)

This serves as the entropy regularization loss which controls
the rate-distortion tradeoff. A higher entropy coefficient \;
leads to more compressed latents (lower rate), but usually
at the cost of PSNR (higher distortion). The network la-
tents, decoder parameter, and probability model parame-
ters are learnable and jointly optimized. Following prior
works, we use a learning rate of 1le—4 for the probability
model weights and the same learning rate for the decoder
weights. We set the learning rate of the latents to 5e—4. All
the parameters are optimized in an end-to-end manner with
an Adam optimizer during training, thus requiring no post-
hoc approaches. After training, we discard the probability
models and use the frequency of each quantized value in
the latent vector to obtain the probability tables required for
arithmetic entropy coding. Note that the continuous surro-
gates are discarded and only their rounded discrete latents
are stored using entropy coding. These latents can then be
decoded using the probability tables. The decoder param-
eters and probability tables have almost no overhead com-
pared to the overall model latents.

B. Additional Dataset Details
B.1. UVG-4K

In addition to the datasets shown in Section 4 of the
main paper, we show quantitative and qualitative results
on 7 more videos from the UVG dataset at the 4K reso-
lution: Twilight, Sunbath, CityAlley, FlowerFocus, Flow-

erKids, RiverBank, and RaceNight. We dub this dataset
UVG-4K (Set 2).

B.2. Youtube-SM

We select 5 more videos from the Youtube-8M dataset,
with varying video content to further test the ability of our
model to encode longer videos. This is an extension of the
experiments from Section 4.4 which consists of a single
video (Mario Kart). We present the details of each video
used in Table[I}

Video Frames Link

Mario Kart 4000 http://bit.ly/3XjIvER
Dota 4261 http://bit.ly/3Xf6Nru
Ride 4000 http://bit.ly/3TOEgWI
Submarine 3626 http://bit.ly/3EJKzGM

Water Scooter 4199 http://bit.ly/30hF9%h
Mortal Kombat 3239 http://bit.ly/3EdvNGU

Table 1. Details of Youtube-8M dataset.

C. Video-wise comparison

We show additional quantitative results on UVG-4K (Set
2) and Youtube-8M mentioned above.

C.1. UVG-HD

We provide video-wise results of our approach along
with that of NeRV [4]. We evaluate the video on the addi-
tional perceptual quality metrics of FLIP [1] and VMAF [7]
as well, along with the standard PSNR. In addition to the
image quality metrics, we also measure the tOF/tLP met-
rics proposed by [5] for measuring temporal consistency.
tOF measures the L1-error between the optical flows from
the predicted frames and the ground-truth frames while tLP
uses the LPIPS metric instead. Results are summarized in
Table |2l We see that we continue to obtain similar perfor-
mance compared to NeRV in terms of these metrics while
being ~12x faster. Also note the adaptive BPP of our
method, which is based on the amount of motion in each
video. In contrast, NeRV maintains a fixed BPP due to
fixed model size (ShakeNDry shows twice the BPP due to
half the number of frames). We observe a small drop in
VMAF (92.33 — 91.14) while maintaining similar value
of FLIP (~ 0.0632) compared to NeRV. We marginally
outperform NeRV based on the temporal metrics of tOF
(0.3167 — 0.3077) and tLP (0.2125 — 0.2032).

C.2. UVG-4K

We provide video-wise results on the 2 sets of UVG
at 4K resolution. For Set 1, we obtain comparable per-
formance to NeRV while obtaining ~6x faster encoding

speed. Similar to UVG-HD, we continue to show the bene-
fits of adaptive compression, with static videos such as Hon-
eybee showing lower levels of BPP (0.14) compared to the
most dynamic video, ReadySteadyGo (0.41 BPP). For Set
2, we outperform NeRV by 1.5 PSNR while still obtaining
25% lower BPP 0.28 — 0.21. The PSNR drop of NeRV on
the Twilight video is largely due to quantization at the fixed
bit width of 20. Hand-tuning is necessary in order to main-
tain higher PSNR but at the cost of BPP. In contrast, our
approach maintains the reconstruction quality for a variety
of videos and adaptively quantizes for each video.

C.3. Youtube-8SM

We now provide video-wise results of 5 videos picked
from the Youtube-8M dataset at 1080p resolution. Details
of the videos are provided in Table[I] Results are summa-
rized in Table[d] We see that our reconstruction quality does
not degrade with longer videos. This behavior is differ-
ent from NeRV, which obtains a significant drop in PSNR
(about —5.2). This is in line with the observations in Sec-
tion 4.4 of the main paper, where we see that increasing
number of frames results in drop of NeRV’s reconstruction
quality while we maintain similar levels of performance.

D. Additional Ablations

In addition to the ablations shown in Fig. 5, we analyze
the effect of layer size and the number of layers of the MLP
in our network when evaluating on the Jockey video of the
UVG-HD dataset. Note that the default values of layer size
is 512 and the number of layers is 5.

D.1. Effect of Layer Number

We increase the number of layers from 3 to 6, while
keeping other parameters at their default values and varying
the entropy coefficient A; for each curve as in Section 5.
Results are summarized in Figure[T{a). We see that increas-
ing the number of layers from 3 to 5 improves the tradeoff
curve (shifts upwards) in the low BPP regime (<0.8). How-
ever, increasing it further shifts the curve upwards and to
the right. This might be because the MLP network requires
higher levels of non-linearity to learn a global representa-
tion for a group of 3 frames which typically contain signifi-
cant motion in the case of Jockey. However, for 6 layers the
network shifts the curve upwards and to the right, and we
no longer obtain increase in PSNR at no cost of BPP.

D.2. Effect of Layer Size

We vary the layer size from 128 to 768 progressively, in
steps of 128 for each of the 5 layers. Results are summa-
rized in Figure [I(b). We see that increasing the layer size
simply shifts the curve upwards and to the right, which is
expected as a higher number of parameters leads to more

http://bit.ly/3XjIvfR
http://bit.ly/3Xf6Nru
http://bit.ly/3TOEgWI
http://bit.ly/3EJKzGM
http://bit.ly/3OhF99h
http://bit.ly/3EdvNGU

. NIRVANA (Ours) NeRV
Video Name
PSNRT VMAF1 FLIP| tOF] tLP] BPP] PSNR{ VMAFt FLIP| ttOF] tLP| BPP]

ReadySteadyGo 35.43 98.04 0.0862 0.3348 0.2231 1.26 34.59 96.95 0.0862 0.3604 0.2089 0.81
Bosphorus 40.53 90.97 0.0549 0.1900 0.1371 0.68 39.11 88.26 0.0621 0.1980 0.1654 0.81
Beauty 35.77 84.46 0.0524 0.2716 0.3123 0.96 34.57 86.35 0.0605 0.3352 03646 0.81
Honeybee 38.83 91.31 0.0505 0.0918 0.1511 0.51 39.71 95.08 0.0419 0.0824 0.1491 0.81
Jockey 37.56 93.07 0.0710 0.7303 0.2777 0.96 38.16 95.76 0.0653 0.7001 0.2684 0.81
Yachtride 37.94 91.31 0.0668 0.3480 0.1604 1.03 35.68 88.70 0.0786 0.4243 0.1881 0.81
ShakeNDry 37.82 88.81 0.0608 0.1875 0.1607 0.76 39.68 95.20 0.0468 0.1165 0.1429 1.61
Average 37.70 91.14 0.0632 0.3077 0.2032 0.86 37.35 92.33 0.0631 0.3167 0.2125 092

Table 2. Video-wise performance on UVG-HD: We show video-wise results of the 7 videos in UVG-HD and compare the reconstruction
quality using the 3 image metrics: PSNR, VMAF, and FLIP, the 2 temporal metrics: tOF/tLP [5], along with compression rate measured
by BPP. We see that we maintain similar performance as NeRV in all 5 metrics and BPP while having 12 faster encoding speed (as also

shown in Table 1 of the main paper).

Video Name NIRVANA (Ours) NeRV Video Name NIRVANA (Ours) NeRV
PSNR BPP PSNR BPP PSNR BPP PSNR BPP
ReadySteadyGo 33.85 0.41 33.22 0.24 FlowerFocus 36.50 0.12 37.08 0.24
Bosphorus 38.71 0.21 39.0 0.24 CityAlley 37.43 0.17 38.39 0.24
Beauty 31.96 0.28 31.05 0.24 Twilight 38.02 0.13 20.99 0.24
Honeybee 35.64 0.14 36.36 0.24 FlowerKids 34.62 0.26 33.77 0.24
Jockey 35.05 0.30 359 0.24 RiverBank 33.83 0.26 32.35 0.24
Yachtride 36.33 0.33 35.05 0.24 RaceNight 32.72 0.27 32.92 0.24
ShakeNDry 34.78 0.24 36.09 0.49 Sunbath 37.75 0.24 44.17 0.49
Average 35.18 0.27 35.23 0.28 Average 35.84 0.21 34.23 0.28

(2) UVG-4K (Set 1)

(b) UVG-4K (Set 2)

Table 3. Video-wise comparison on different sets of UVG-4K: We show video-wise results on 2 different sets of 7 UVG videos at 4K
resolution. Set-1 consists of videos from UVG-HD at 4K resolution while Set 2 consists of additional 7 videos from the dataset. We
maintain similar performance in terms of PSNR and BPP as NeRV while also being ~6x faster for both sets and being 6 x faster in terms

of encoding time.

Video Name NIRVANA (Ours) NeRV
PSNR BPP PSNR BPP
Dota 38.03 0.62 35.53 0.34
Ride 36.65 1.09 29.74 0.36
Submarine 38.48 0.69 33.64 0.40
Water Scooter 37.79 0.84 30.46 0.34
Mortal Kombat 36.02 1.03 31.36 0.45
Average 37.39 0.85 32.14 0.38

Table 4. Results on Youtube-8M videos with long duration. We
provide video-wise results on 5 videos picked from the Youtube-
8M datasets with approximately 4000 frames compared to the typ-
ical 600 from UVG. Still we maintain PSNR/BPP with no change
in hyperparameters, whereas NeRV shows large degradation in
performance for the same network and similar encoding times.

representation capability of the network at the cost of more
parameters. While increasing the number of layers in-
creases number of parameters as well, a similar tradeoff is
not present in that case up to a certain level, suggesting that
a minimum number of non-linearities/activation functions
are important to achieve the optimal tradeoff.

D.3. Effect of video content

Section 4.5 in the paper shows the capability of our ap-
proach to adapt to video content based on varying stability.
To further illustrate this, we visualize the correlation be-
tween BPP and L1-error (average L1 norm between pixel
values of two frame groups) in Fig.[2l We see that for the
Jockey video, lower L1-error between 2 subsequent frame
groups shows direct correlation with the BPP required for
storing that frame-group. This is to be expected as lower
frame residuals reduces the entropy of the quantized resid-

Effect of Number of MLP Layers

Effect of MLP Layer Size

Layer Size
— 128 — 512
N 256 — 640
/\' 384 — 768

()

025 050 0.75 1.00 1.25 1.50
BPP

(b)

Figure 1. Increasing number of layers improves the PSNR/BPP curve upto 5 layers in the lower BPP regime (<0.8). Increasing layer size
shifts the PSNR/BPP curve upwards and to the right as representation capacity increases along with more parameters.

Honeybee Jockey
PSNR BPP PSNR BPP
500 3793 035 3597 0.85
1000 38.25 037 36.82 0.90
1500 3872 050 37.25 093
2000 3883 0.51 37.56 0.96

Iterations

Table 5. Convergence. We vary number of training iterations
for each frame group in the Honeybee (static) and Jockey (dy-
namic) videos from UVG-HD. Honeybee achieves faster conver-
gence showing that stable videos can be encoded faster.

ual weights as well and subsequently, lower BPP.

In addition to BPP, we also analyze the effect of conver-
gence speed for various types of videos. We vary number
of iterations for training networks for each frame group for
the Honeybee and Jockey videos and visualize the results
in Table[5] Stable videos such as Honeybee converge faster
with only a 0.9 dB PSNR drop for 4x encoding speedup
from 2000 to 500 iterations while dynamic videos such as
Jockey obtain a larger 1.5d B PSNR drop at similar encod-
ing speedups. Due to our autoregressive modeling, the ini-
tialization of the network weights from the previous frame
group provides a good solution for stable videos with little
inter frame shift in comparison to dynamic ones.

E. Denoising

To test our method on downstream applications, we
choose the task of denoising. Given a noisy video, our
method is capable of removing the noisy patterns without
any explicit supervision. We train and test our method
on videos with various noise patterns and observe that out
method outperforms all classical filter baselines. Results
are shown in table[6] We outperform classically filters such
as Mean/Median/Gaussian filter for a variety of noises such

Correlation between BPP and L1 Error

o
i
wn

—— BPP (Jockey)
Mean L1 Error (Jockey)

1.001 WW e
0.751 \\M
050 WWW\WWWW

0 50 100 150 200
Frame index

—— BPP (Honeybee)
Mean L1 Error (Honeybee)

1.251

BPP

o
o
%)

o
=
o
Mean L1 Error

0.00

Figure 2. BPP correlates with L1 error: lower L1 error gives lower BPP.

Denoising Method Black White Salt& Pepper Random Average

Baseline 27.5 28.29 27.95 30.95 28.74
Mean Filter 29.11 29.06 29.10 29.63 29.22
Median Filter 3389 33.84 33.87 33.89 33.87
Gaussian Filter 30.27 30.14 30.23 30.99 30.41
NIRVANA 3718 37.19 37.21 37.22 37.20

Table 6. Results for video denoising. We outperform classical
denoising filters by a large margin for different types of noises.

as Black/White/Salt and Pepper showing the efficacy of our
representations to be applied to other tasks as well.

F. Qualitative Results

In Figure 3] we qualitatively visualize the reconstruction
results for 3 videos from Set 2 of UVG-4K and 2 videos
from Set 1. We obtain higher-quality and more faithful
reconstructions while preserving more details at similar or
even lower BPP compared to NeRV; e.g., Twilight (0.24 —
0.13), RiverBank (0.24 — 0.26), CityAlley (0.24 — 0.17).
Notice the bird which is reconstructed by our approach in
Twilight (top), or finer details of the branches in River-
Bank (second), or maintaining the right color information

of the door and the people’s shirts in CityAlley (third) or
the red dot in Yachtride (fourth). We continue to maintain
important information in the images such as the number on
the signboard of ReadySetGo (bottom) while NeRV fails to
capture these fine details.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

Pontus Andersson, Jim Nilsson, Tomas Akenine-Moller,
Magnus Oskarsson, Kalle Astrom, and Mark D. Fairchild.
Flip: A difference evaluator for alternating images. Proc.
ACM Comput. Graph. Interact. Tech., 3(2), aug 2020.
Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compression
with a scale hyperprior. arXiv preprint arXiv:1802.01436,
2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Es-
timating or propagating gradients through stochastic neurons
for conditional computation. arXiv preprint arXiv:1308.3432,
2013.

Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser Nam Lim,
and Abhinav Shrivastava. Nerv: Neural representations for
videos. Advances in Neural Information Processing Systems,
34:21557-21568, 2021.

Mengyu Chu, You Xie, Jonas Mayer, Laura Leal-Taixé,
and Nils Thuerey. Learning temporal coherence via self-
supervision for gan-based video generation. ACM Transac-
tions on Graphics (TOG), 39(4):75-1, 2020.

Sharath Girish, Kamal Gupta, Saurabh Singh, and Abhi-
nav Shrivastava. Lilnetx: Lightweight networks with ex-
treme model compression and structured sparsification. ArXiv,
abs/2204.02965, 2022.

Zhi Li, Anne Aaron, loannis Katsavounidis, Anush Moorthy,
and Megha Manohara. Toward A Practical Perceptual Video
Quality Metric, 2016.

D. Oktay et al. Scalable model compression by entropy pe-
nalized reparameterization. In /CLR, 2020.

NIRVANA

i
(e

CEEE L

ﬁ{

Figure 3. Qualitative results from UVG-4K: (Left) Ground truth video frames. (Center) Reconstruction from NIRVANA. (Right) Re-
construction from NeRV. Top to bottom: We show additional examples where NIRVANA is able to preserve the image fidelity after recon-
struction, such as the bird in Twilight (top), the tree in RiverBank (second), humans in CityAlley (third) and signboards in ReadySetGo
(bottom).

	. Additional Implementation Details
	. NeRV
	. Entropy Loss and Weight Quantization

	. Additional Dataset Details
	. UVG-4K
	. Youtube-8M

	. Video-wise comparison
	. UVG-HD
	. UVG-4K
	. Youtube-8M

	. Additional Ablations
	. Effect of Layer Number
	. Effect of Layer Size
	. Effect of video content

	. Denoising
	. Qualitative Results

