
Chat2Map: Efficient Scene Mapping from Multi-Ego Conversations
Supplementary Material

Sagnik Majumder1,2,3 Hao Jiang2 Pierre Moulon2 Ethan Henderson2

Paul Calamia2 Kristen Grauman1,3* Vamsi Krishna Ithapu2∗

1UT Austin 2Reality Labs Research, Meta 3FAIR

In this supplementary material we provide additional de-
tails about:

• Video (with audio) for qualitative illustration of our
task and qualitative assessment of our map predictions
(Sec. 1)

• Societal impact of our work (Sec. 2), as mentioned in
Sec. 6 in main

• Detailed analysis of the power and time cost of our
model (Sec. 3), as mentioned in Sec. 5.1 in main

• Experiment to show the effect of ambient environment
sounds on mapping accuracy (Sec. 4), as referenced in
Sec. 5.2 in main

• Experiment to show the effect of unheard sounds on
map predictions (Sec. 5), as noted in Sec. 5.2 in main

• Experiment to show the impact of the visual budget
B (Sec. 3 in main) on mapping quality (Sec. 6), as
referenced in Sec. 5 and 5.2 in main.

• Experiment to show the effect of sensor noise on map-
ping accuracy (Sec. 7), as mentioned in Sec. 5 and 5.2
in main.

• Experiment to show mapping performance as a function
of the target map size (Sec. 8), as noted in Sec. 5.2 in
main.

• Experiment to show the effect of different types of ego
initializations on map predictions (Sec. 8), as referenced
in Sec. 5.2 in main

• Experiment to show the effect of multiple random
dataset splits on mapping quality (Sec. 8), as referenced
in Sec. 5.2 in main

• Experiment to show the effect of the training data size
on the model performance (Sec. 8), as mentioned in
Sec. 5 in main

*Equal contribution

• Dataset details (Sec. 12) in addition to what’s provided
in Sec. 5 in main.

• Additional baseline details for reproducibility (Sec. 13),
as referenced in Sec. 5 in main.

• Architecture and training details (Sec. 14), as noted in
Sec. 5 in main.

1. Supplementary video
The supplementary video qualitatively depicts our task,

Chat2Map:Efficient Scene Mapping from Multi-Ego Con-
versations. Moreover, we qualitatively show our model’s
mapping quality by comparing the predictions against the
ground truths and the visual samples chosen by our sampling
policy for efficient mapping, and analyze common failure
modes of our model. We also demonstrate the acoustically
realistic SoundSpaces [1] audio simulation platform that
we use for our core experiments. Please use headphones
to hear the spatial audio correctly. The video is available
on http://vision.cs.utexas.edu/projects/
chat2map.

2. Societal impact
Our model enables efficiently mapping a scene from nat-

ural conversations. This has multiple applications with a
positive impact. For example, accurate mapping of an un-
seen environment enables many downstream applications
in AR/VR (e.g., accurate modeling of scene acoustics for
an immersive user experience) and robotics (e.g., a robot
using a scene map to better navigate and interact with its
environment). However, our model relies on speech inputs,
which when stored or used without sufficient caution could
be prone to misuse by unscrupulous actors. Besides, the
dataset used in our experiments contains indoor spaces that
are predominantly of the Western design, and with a certain
object distribution that is common to such spaces. This may
bias models trained on such data toward similar types of
scenes and reduce generalization to scenes from other cul-
tures. More innovations in the model design to handle strong

1

http://vision.cs.utexas.edu/projects/chat2map
http://vision.cs.utexas.edu/projects/chat2map


Model F1 score ↑ IoU ↑
All-occupied 63.4 48.8
Register-inputs 72.6 60.1
OccAnt [13] 74.5 62.7
AV-Floorplan [12] 78.7 67.5
Ours 81.9 71.5

Ours w/o vision 73.5 61.2
Ours w/o audio 78.1 66.7
Ours w/o E

′

i‘s speech 81.5 70.9
Ours w/o shared mapping 80.0 69.1

Table 1. Passive mapping performance (%) with ambient sounds.

1 4 8 12 16
Episode step

62

64

66

68

70

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

Figure 1. Effect of ambient environment sounds on active mapping

shifts in scene layout and object distribtutions, as well as
more diverse datasets are needed to mitigate the impact of
such possible biases.

3. Power and time cost
With visual budget B = 2 and episode length T = 16

(Sec. 3 and 5 in main), our model skips 28 frames and saves
7.2 GFLOPs in mapping but adds 24.1 GFLOPs due to the
policy, thus adding a net of 16.1 GFLOPs. This translates
to around 0.5 Watt [4] of extra power for running the active
mapper but a saving [9] of ∼ 28 × 3 = 74 Watt in camera
capture, thus saving a net of ∼73.5 Watt in power. The total
runtime of our model in this setting is 5.6 s on a Quadro
GV100 GPU.

Compared to the heuristical baseline policies (Sec. 5 in
main), our policy adds ∼24GFLOPs, consuming 1 extra
Watt [4] on modern GPUs, while improving the map by 14
m2 on avg (Fig. 3 in main).

4. Ambient and background sounds
We also test our model’s robustness to ambient and back-

ground sounds by inserting a non-speech sound (e.g. running
AC, dog barking, etc.) at a random location outside the
egos’ trajectories. Although quite challenging, our model
performs better than the baselines for both passive (Table 1)
and active mapping (Fig. 1). Hence, even without explicit

Model F1 score ↑ IoU ↑
All-occupied 63.4 48.8
Register-inputs 72.6 60.1
OccAnt [13] 74.5 62.7
AV-Floorplan [12] 79.0 67.7
Ours 81.6 71.1

Ours w/o vision 72.6 60.1
Ours w/o audio 78.1 66.7
Ours w/o E

′

i’s speech 81.3 70.7
Ours w/o shared mapping 80.7 70.0

Table 2. Passive mapping performance (%) on unheard sounds.

1 4 8 12 16
Episode step

62

64

66

68

70

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

Figure 2. Active mapping performance vs. episode step on unheard
sounds.

audio separation, our model is able to implicitly ground its
audio representations in the corresponding pose features for
accurate mapping.

5. Unheard sounds

In Sec. 5.1 in main, we showed results with heard sounds
(Sec. 5 in main), i.e. the anechoic speech sounds uttered by
the egos are shared between train and test splits. However,
due to our use of unseen environments in test (Sec. 5 in
main), the spatial speech sounds input to our model during
test are not heard in training. To make the evaluation even
more challenging, we conduct a parallel experiment here,
where even the anechoic speech is distinct from what’s used
in training, which we call as the unheard sound setting (Sec.
5 in main).

Table 2 shows our passive mapping results in the unheard
sound setting. Our model is able to retain its performance
margins over all baselines even in this more challenging
scenario.

We notice a similar trend upon evaluating our model for
active mapping on unheard sounds. Fig. 2 shows that our
model is able to generalize to novel sounds better than all
baselines.

This indicates that both our mapper fM and visual sam-
pling policy πV are able to learn useful spatial cues from



1 4 8 12 16
Episode step

62.5

65.0

67.5

70.0

72.5

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

(a) B = 4

1 4 8 12 16
Episode step

65

70

75

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

(b) B = 6

Figure 3. Active mapping performance vs. episode step with
B ∈

{
4, 6

}
.

Model F1 score ↑ IoU ↑
All-occupied 63.0 48.3
Register-inputs 72.3 59.7
OccAnt [13] 74.7 63.0
AV-Floorplan [12] 77.6 65.8
Ours 79.1 68.0

Ours w/o vision 72.6 60.0
Ours w/o audio 76.7 65.1
Ours w/o E

′

i’s speech 78.8 67.7
Ours w/o shared mapping 78.5 67.2

Table 3. Passive mapping performance (%) with sensor noise.

audio that are agnostic of the speech content and semantics.

6. Visual budget value
So far, we have shown active mapping results with the

visual budget set to B = 2 (Sec. 5.1 and Fig. 3 in main). To
analyze the effect of larger values of B, we show our active
mapping performance for B ∈

{
4, 6

}
in Fig. 3. Our model

outperforms all baselines even for these larger B values. We
also observe that the lower the visual budget, the higher the
performance margins are for our model. This shows that our
model is particularly more robust to the lack of visuals in
extremely low-resource settings.

7. Sensor noise
Here, we test our model’s robustness to sensor noise by

adding noise of the appropriate type individually to each
sensor. For RGB images, we sample the noise from a
Gaussian distribution with a mean of 0 and a standard de-
viation of 0.2 [13, 14]. For depth, we use the Redwood
depth noise model [2, 13, 14], where the amount of noise
is higher for higher depth values and vice-versa. Follow-
ing [13], we sample pose noise from a truncated Gaus-
sian with a mean of 0.025 m and a standard deviation of
0.001 m for the spatial location component of an ego pose(
(x, y) in Sec. 3 in main

)
. For orientation θ (Sec. 3 in

main), we use another truncated Gaussian with a mean of
0.9◦ and a standard deviation of 0.057◦. Both distributions
are truncated at 2 standard deviations. For our multi-channel

1 4 8 12 16
Episode step

60

62

64

66

68

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

Figure 4. Active mapping performance vs. episode step with sensor
noise.

H = W = 8 m H = W = 9.6 m
Model F1 score ↑ IoU ↑ F1 score ↑ IoU ↑
All-occupied 53.5 37.9 46.4 31.2
Register-inputs 65.9 53.4 61.6 49.6
OccAnt [13] 67.8 55.7 63.0 51.3
AV-Floorplan [12] 71.4 59.1 68.7 53.1
Ours 73.4 60.7 72.0 54.4

Ours w/o vision 66.1 53.5 62.6 50.3
Ours w/o audio 71.1 58.1 63.8 51.3
Ours w/o E

′

i’s speech 73.3 60.5 67.6 54.0
Ours w/o shared mapping 72.9 60.3 68.0 54.5

Table 4. Passive mapping performance (%) for larger target map
sizes.

1 4 8 12 16
Episode step

60

62

64

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

(a) H = W = 8 m

1 4 8 12 16
Episode step

57

58

59

60

61

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours w/o audio for V

Ours

(b) H = W = 9.6 m

Figure 5. Active mapping performance vs. episode step for larger
target map sizes.

microphones (Sec. 3 in main), we add a high amount of noise
(SNR of 40 dB) [1] using a standard noise model [2, 19].

Table 3 and Fig. 4 report our passive and active mapping
performance, respectively, in the face of sensor noise. In
both settings, although our model’s performance declines
in comparison to the noise-free setting (cf. Table 1 and Fig.
3 in main), it generalizes better than all baselines, thereby
underlining the effectiveness of our method.

8. Target map size
In main (Sec. 5.1), we showed mapping results with

H ×W = 6.4× 6.4 m2(∼ 41 m2), where H and W denote



Facing away Separated by occlusion
Model F1 score ↑ IoU ↑ F1 score ↑ IoU ↑
OccAnt [13] 75.2 63.7 75.3 62.8
AV-Floorplan [12] 79.6 68.7 80.1 69.0
Ours 82.9 72.8 83.0 71.8

Table 5. Passive mapping performance (%) for different ego ini-
tializations.

1 4 8 12 16
Episode step

62

64

66

68

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours

(a) Facing away

1 4 8 12 16
Episode step

64

66

68

70

72
M

ea
n 

F1
 sc

or
e 

(%
)

Random
Unique pose
Greedy
Ours

(b) Separated by occlusion

Figure 6. Active mapping performance for different ego initializa-
tions.

Model F1 score ↑ IoU ↑
OccAnt [13] 74.4 63
AV-Floorplan [12] 78.8 67.6
Ours 81 70.6

Table 6. Average passive mapping performance (%) over 3 random
data splits.

the height and width of the ground-truth local 360◦ FoV
maps (Sec. 4.3 in main). To analyze the impact of larger
target map sizes on the mapping quality, we also test our
model with H ×W ∈

{
8× 8 m2(64 m2), 9.6× 9.6 m2(∼

92 m2)
}

. Table 4 and Fig. 5 show the corresponding results
for passive and active mapping, respectively. In both cases,
our model outperforms all baselines by a substantial margin,
showing that our method is also robust to higher target map
sizes.

9. Different ego initializations
Here, we study the effect of ego initialization by consid-

ering two cases: 1) the egos initially face away from each
other, and 2) the egos are initially separated by an occlusion.
In both cases, our model outperforms all baselines on both
passive (Table 5) and active mapping (Fig. 6), showing that
our model is robust to different ego initializations.

10. Multiple random dataset splits
Here, we gauge the effect of multiple random dataset

splits on our model performance. In each random split, we
use the same distribution of train/val/test scenes and episode
counts as mentioned in Sec. 5 in main, but instantiate each
episode with a new seed. Table 6 and Fig. 7 report the passive

1 4 8 12 16
Episode step

62

64

66

68

70

M
ea

n 
F1

 sc
or

e 
(%

)

Random
Unique pose
Greedy
Ours

Figure 7. Average active mapping performance over 3 random data
splits vs. episode step.

8K 31K 122K 489K 2M 5M
Train episode count

62

64

66

68

70

La
st

 m
ea

n 
F1

 sc
or

e 
(%

)

Figure 8. Active mapping performance on unheard sounds vs.
training data size.

and active mapping performance averaged over 3 random
splits, respectively. We observe that our model is more robust
to different dataset instantiations than all baselines across
both passive and active mapping.

11. Training data size

Here, we analyze the effect of the training data size on
the active mapping quality. Fig. 8 shows the final active
mapping F1 score as a function of the number of training
episodes. The mapping performance significantly improves
with more training data up to 2 million episodes and then
flattens between 2 and 5 million episodes.

12. Dataset details

Here, we provide additional dataset details.

Visual data. All RGB-D images in our experiments have
a resolution of 128× 128.

To generate the topdown occupancy maps, we threshold
the local pointcloud computed from the 90◦ FoV depth im-
ages (Sec. 4.1 in main) using a lower and upper height limit



of 0.2 and 1.5 m, respectively, such that a map cell is con-
sidered occupied if there is a 3D point for it in the 0.2-1.5 m
range, and free otherwise.

To generate an estimate of the scene map, we register
the estimates of ground-truth local 360◦ FoV maps, M̃i,js
onto a shared scene map M̃ (Sec. 4.3 in main) and main-
tain a count of the number of updates undergone by every
cell in the shared map. To register a local estimate M̃i,j ,
we first translate and rotate M̃i,j within M̃ on the basis
of its normalized pose Pi,j . Next, we add M̃i,j with the
corresponding part of M̃ and update the counter for every
map cell that’s been changed through the registration. We
repeat this process for every M̃i,j in the episode. Finally,
we normalize the updated M̃ by dividing each cell in it by
its number of updates from the counter, and thresholding
at 0.5. In our experiments, M̃ covers a maximum area of
128.4× 128.4 m2.

Audio data. For each conversation episode, we randomly
choose 2 speakers from the same split – heard or unheard
(Sec. 5 in main). Starting at a random time in the audio clip
for each speaker, we choose contiguous 3s slices from each
clip for T steps to use as the anechoic audio for the two egos
in the episode, where T denotes the episode length (Sec. 3
in main). Further, we normalize each slice to have the same
RMS value of 400 across the whole dataset, where all audio
is sampled at 16 kHz and stored using the standard 16-bit
integer format.

To generate the spectrograms, we convolve a speech slice
with the appropriate 9-channel RIR sampled at 16 kHz and
compute its STFT with a Hann window of 31.93 ms, hop
length of 8.31 ms, and FFT size of 511 to generate 9-channel
magnitude spectrograms, where each channel has 256 fre-
quency bins and 257 overlapping temporal windows. We
assume access to detected and separated speech from the
egos at all times since on-device microphones of AR glasses
can tackle nearby and distant speaker detection [7] and sepa-
ration [11].

13. Baselines

Here, we provide additional implementation details for
our active mapping baselines for reproducibility (Sec. 5 in
main).

• Random. At each step t, we generate a random number
between 0 and 1 from a uniform distribution. Depend-
ing on which quartile of the 0-1 range the random num-
ber lies in, we skip visual frames for both egos, sample
for just one ego, or sample for both egos.

• Greedy. Starting at t = 2, we sample visual frames for
both egos at every step until we run out of the visual

budget B. If the value of B is such that it allows sam-
pling only one visual frame at a certain step (i.e. B is
odd), we randomly choose the ego for which we sample
the frame at that step.

• Unique-pose. To implement this baseline, we keep
track of the egos’ poses during an episode. At any step
t, we sample the frame for an ego if it’s current pose
has never been assumed before by either of the egos in
that episode.

14. Architecture and training
Here, we provide our architecture and additional training

details for reproducibility. We will release our code.

14.1. Policy architecture

Visual encoder. To encode local occupancy map inputs,
our policy πV (Sec. 4.2 in main) uses a 6-layer CNN con-
sisting of 5 convolutional (conv.) layers followed by an
adaptive average pooling layer. The first three conv. layers
use a kernel size of 4 and a stride of 2, while the last two
conv. layers use a kernel size of 3 and a stride of 1. All
conv. layers use a zero padding of 1, except for the third
conv. layer, which uses a zero padding of 2. The number
of output channels of the conv. layers are [64, 64, 128, 256,
512], respectively. Each convolution is followed by a leaky
ReLU [10, 18] activation with a negative slope of 0.2, and
a Batch Normalization [6] of 1e−5. The adaptive average
pooling layer reduces the output of the last conv. layer to a
feature of size 1× 1× 512.

To encode RGB images (Sec. 4.2 in main), πV uses a
separate CNN with 5 conv. layers and an adaptive average
pooling layer. Each conv. layer has a kernel size of 4, stride
of 2 and zero padding of 1. The number of output channels
are [64, 64, 128, 256, 512], respectively. Similar to the
occupancy map encoder, each convolution is followed by
a leaky ReLU [10, 18] activation with a negative slope of
0.2 and a Batch Normalization [6] of 1e−5, and the adaptive
average pooling layer reduces the output of the last conv.
layer to a feature of size 1× 1× 512.

We fuse the occupancy and RGB features by concate-
nating them and passing through a single linear layer that
produces a 512-dimensional visual embedding v (Sec. 4.2
in main).

Speech encoder. The speech encoder (Sec. 4.2 in main)
in πV is a CNN with 5 conv. layers and an adaptive average
pooling layer. Each conv. layer has a kernel size of 4, stride
of 2 and a padding of 1, except for the second conv. layer,
which has a kernel size of 8, stride of 4 and padding of 3.
The number of channels in the CNN are [64, 64, 128, 256,



512], respectively. Similar to the visual encoder, each conv.
layer is followed by a leaky ReLU [10, 18] with a negative
slope of 0.2 and a Batch Normalization [6] of 1e−5. The
adaptive average pooling layer reduces the output of the last
conv. layer to a feature of size 1× 1× 512.

Pose encoder. The pose encoder (Sec. 4.2 in main) in πV

is a single linear layer that takes a normalized pose P (Sec.
4.1 in main) as input and produces a 32-dimensional pose
embedding.

Fusion layers. We perform linear fusion of the visual,
speech and pose embeddings (Sec. 4.2 and Fig. 2 in main)
at two levels. The first level has 4 linear layers and the
second level has 1 linear layer. Each linear layer produces a
512-dimensional fused feature as its output.

Policy network. The policy network (Sec. 4.2 in main)
comprises a one-layer bidirectional GRU [3] with 512 hidden
units. The actor and critic networks consist of one linear
layer.

14.2. Mapper architecture

Visual encoder. To encode local occupancy map inputs,
our shared mapper fM (Sec. 4.3 in main) uses a CNN
similar to the one used for encoding occupancy maps in πV

(Sec. 14.1), except that it doesn’t have a pooling layer at the
end. The RGB encoder (Sec. 4.3 in main) in fM is also
similar to the one for πV , except that it also doesn’t have a
pooling layer at the end. We fuse the map and RGB features
by concatenating them along the channel dimension, and
obtain a 4× 4× 1024 dimensional feature.

Speech encoder. The speech encoders (Sec. 4.3 in main)
in fM are CNNs with 5 layers that share the architecture
with the first 5 conv. layers of the speech encoder in πV

(Sec. 14.1), except that the last conv. layer in both encoders
has 1024 output channels.

Modality encoder. For our modality embedding m̂ (Sec.
4.3 in main), we maintain a sparse lookup table of 1024-
dimensional learnable embeddings, which we index with 0
to retrieve the visual modality embedding (m̂V ), 1 to retrieve
the modality embedding (m̂S) for the speech from self, and
2 to retrieve the modality embedding (m̂S′) for the speech
from the other ego.

Occupancy prediction network. The transformer [20]
(Sec. 4.3 in main) in our occupancy prediction network com-
prises 6 encoder and 6 decoder layers, 8 attention heads,
an input and output size of 1024, a hidden size of 2048,

and ReLU [10, 18] activations. Additionally, we use a
dropout [17] of 0.1 in our transformer.

The transpose convolutional network U (Sec. 4.3 in main)
consists of 6 layers in total. The first 5 layers are transpose
convolutions (conv.) layers. The first 4 transpose conv.
layers have a kernel size of 4 and stride of 2, and the last
transpose conv. layer has a kernel size of 3 and stride of
1. Each transpose conv. has a padding of 1, ReLU [10, 18]
activation and Batch Normalization [6]. The number of the
output channels for the transpose conv. layers are [512, 256,
128, 64, 2], respectively. The last layer in U is a sigmoid
layer (Sec. 4.3 in main), which outputs the map estimates.

14.3. Parameter initialization

We use the Kaiming-normal [5] weight initialization strat-
egy to initialize the weights of all our network modules,
except for the pose encoding layers and fusion layers, which
are initialized with Kaiming-uniform [5] initialization, and
the policy network, which is initialized using the orthogonal
initialization strategy [15]. We switch off biases in all net-
work modules, except for the policy network where we set
the biases initially to 0.

14.4. Training hyperparameters.

Policy training. To train our policy πV using DD-
PPO [21] (Sec. 4.4 in main), we weight the action loss
by 1.0, value loss by 0.5, and entropy loss by 0.05. We
train our policy on 8 Nvidia Tesla V100 SXM2 GPUs with
Adam [8], an initial learning rate of 1e−4 and 8 processes
per GPU for 8.064 million policy prediction steps. Among
other policy training parameters, we set the clip parameter
value to 0.1, number of DD-PPO epochs to 4, number of
mini batches to 1, max gradient norm value to 0.5, reward
discount factor γ to 0.99, and the value of λ in the general-
ized advantage estimation [16] formulation for DD-PPO to
0.95.

Mapper training. We train our shared scene mapper fM

(Sec. 4.3 in main) with a binary cross entropy loss (Sec.
4.4 in main) on 4 Nvidia Quadro RTX 6000 GPUs until
convergence by using Adam [8], an initial learning rate of
1e−4 and a batch size of 24.

References
[1] Changan Chen, Unnat Jain, Carl Schissler, Sebastia Vi-

cenc Amengual Gari, Ziad Al-Halah, Vamsi Krishna Ithapu,
Philip Robinson, and Kristen Grauman. Soundspaces: Audio-
visual navigation in 3d environments. In ECCV, 2020. 1,
3

[2] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust
reconstruction of indoor scenes. In 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5556–5565, 2015. 3



[3] Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel,
Aaron C Courville, and Yoshua Bengio. A recurrent latent
variable model for sequential data. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 28. Curran
Associates, Inc., 2015. 6

[4] Radosvet Desislavov, Fernando Martínez-Plumed, and José
Hernández-Orallo. Compute and energy consumption trends
in deep learning inference. arXiv preprint arXiv:2109.05472,
2021. 2

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level per-
formance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 6

[6] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Francis Bach and David Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine
Learning, volume 37 of Proceedings of Machine Learning Re-
search, pages 448–456, Lille, France, 07–09 Jul 2015. PMLR.
5, 6

[7] Hao Jiang, Calvin Murdock, and Vamsi Krishna Ithapu. Ego-
centric deep multi-channel audio-visual active speaker local-
ization. 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 10534–10542, 2022. 5

[8] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[9] Robert LiKamWa, Zhen Wang, Aaron Carroll, Felix Xiaozhu
Lin, and Lin Zhong. Draining our glass: An energy and
heat characterization of google glass. In Proceedings of 5th
Asia-Pacific Workshop on Systems, pages 1–7, 2014. 2

[10] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units
Improve Restricted Boltzmann Machines. In Proceedings
of the 27th International Conference on Machine Learning,
pages 807–814. Omnipress, 2010. 5, 6

[11] Katharine Patterson, Kevin W. Wilson, Scott Wisdom, and
John R. Hershey. Distance-based sound separation. In IN-
TERSPEECH, 2022. 5

[12] Senthil Purushwalkam, Sebastia Vicenc Amengual Gari,
Vamsi Krishna Ithapu, Carl Schissler, Philip Robinson, Ab-
hinav Gupta, and Kristen Grauman. Audio-visual floorplan
reconstruction. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1183–1192,
2021. 2, 3, 4

[13] Santhosh K Ramakrishnan, Ziad Al-Halah, and Kristen Grau-
man. Occupancy anticipation for efficient exploration and
navigation. In European Conference on Computer Vision,
pages 400–418. Springer, 2020. 2, 3, 4

[14] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia Liu,
Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform
for embodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9339–
9347, 2019. 3

[15] Andrew M. Saxe, James L. McClelland, and Surya Ganguli.
Exact solutions to the nonlinear dynamics of learning in deep
linear neural networks. CoRR, abs/1312.6120, 2014. 6

[16] John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jor-
dan, and P. Abbeel. High-dimensional continuous control us-
ing generalized advantage estimation. CoRR, abs/1506.02438,
2016. 6

[17] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929–1958, 2014. 6

[18] Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deeply learned
face representations are sparse, selective, and robust. 2015
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), pages 2892–2900, 2015. 5, 6

[19] Ryu Takeda, Yoshiki Kudo, Kazuki Takashima, Yoshifumi
Kitamura, and Kazunori Komatani. Unsupervised adaptation
of neural networks for discriminative sound source local-
ization with eliminative constraint. In 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 3514–3518, 2018. 3

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 6

[21] Erik Wijmans, Abhishek Kadian, Ari S. Morcos, Stefan Lee,
Irfan Essa, Devi Parikh, Manolis Savva, and Dhruv Batra.
Dd-ppo: Learning near-perfect pointgoal navigators from 2.5
billion frames. In ICLR, 2020. 6


	. Supplementary video
	. Societal impact
	. Power and time cost
	. Ambient and background sounds
	. Unheard sounds
	. Visual budget value
	. Sensor noise
	. Target map size
	. Different ego initializations
	. Multiple random dataset splits
	. Training data size
	. Dataset details
	. Baselines
	. Architecture and training
	. Policy architecture
	. Mapper architecture
	. Parameter initialization
	. Training hyperparameters.


