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Appendix
1. Dataset and Implementation Details

Following [11], we use EfficientNet [14] pretrained on
ImageNet [1] as our image encoder backbone. Two heads
are applied to estimate pixel features and pixel-wise depth
distribution from the 8× downsampled feature map. The
3D feature maps are projected to the bird’s-eye-view frame
using mean pooling. For the bird’s-eye-view decoder we
use ResNet-18 [3] as backbone, and upsample the features
learned from the first three meta-layers of ResNet to the fi-
nal BEV output. The D1 and D2 domain discriminators
are applied to the output feature layers of EfficientNet and
ResNet backbone, respectively. We use a light weight dis-
criminator architecture, which is composed of a global av-
eraging pooling layer, followed by two fully connected lay-
ers, and outputs the domain label. For input, we resize and
crop input images to size 128 × 352. For output, we con-
sider a 100 meters × 100 meters range centered at the ego-
vehicle, with the grid size set to be 0.5 meters× 0.5 meters.
The depth bin is set to be 1.0 meter between 4.0 meters and
45.0 meters range. The whole model is trained end-to-end,
with λT = 1.0, λdp = 0.05, λD1

= 0.1, λD2
= 0.01. We

train CroMA using the Adam [5] optimizer with learning
rate 0.001 and weight decay 1e-7 for 50K steps for the
teacher model, and 200K for the student model. We use
horizontal flipping, random cropping, rotation, and color
jittering augmentation during training. The whole model
is implemented using the PyTorch framework [10].

Following [11, 15], we use EfficientNet [14] pretrained
on ImageNet [1] as our image backbone encoder. We use
pointpillars as our Lidar backbone [6], and use the projec-
tion based Radar backbone as described in Sec. 3.1. We
downsample the camera images to 28×60, 1/8 of the in-
put size. The Lidar and Radar feature embeddings are both
interpolated to 200×200 size in the BEV frame. We use 4-
head attention blocks with embedding of 64 channels. The
decoder is composed of three 2× bilinear-upsample layers,
each followed by a convolution layer to obtain the final out-

Table A. (1) BEVGuide achieves best performance on 3D detec-
tion; (2) Performance improvement comes from both our BEV-
guided multi-sensor fusion strategy and leveraging the overlooked
Radar sensor; (3) Stronger backbone leads to better performance.

Method Modality Backbone mAP↑ NDS↑ mAVE↓
FUTR3D C+R ResNet-101 35.0 45.9 0.56
BEVGuide 42.1 53.7 0.39

BEVFusion C+L Swin-T 68.5 71.4 -
BEVGuide 68.9 71.4 0.25

BEVGuide C+R+L
EfficientNet 67.9 70.0 0.24
ResNet-101 69.0 71.6 0.22

Swin-T 69.3 71.5 0.21

put map of the desired size.
We train our model with a combination of focal loss [7]

for semantic segmentation and a ℓ2 loss for velocity estima-
tion task. We optimize the model with AdamW [9], learning
rate 4e-3, and weight decay 1e-7. The model is trained on a
8-V100 machine with batch size 4 for 40 epochs.

2. Additional Results

Results on 3D Object Detection. In addition to 3D
BEV semantic segmentation, we also conduct experiments
on 3D object detection in Table A, which further demon-
strate the effectiveness and generality of our method. Here
we show comparison against strongest prior work [8] with
mean Average Precision (mAP), Nuscenes Detection Score
(NDS), and mean Average Velocity Error (mAVE) metrics,
on the nuScenes validation set without test time augmen-
tation (TTA). Results show that BEVGuide achieves lead-
ing results on detection. Our method also significantly im-
proves the velocity metric mAVE, validating we exploit and
benefit from the additional Radar sensor.

Meanwhile, we have chosen to conduct experiments
on BEV scene segmentation task following existing work
OFT [12], Lift-Splat [11], FIERY [4], and CVT [15]. This
task requires a more comprehensive understanding of the
surrounding environment, encompassing not only vehicles,
but roads, lanes, and other possible elements. Consequently,
we believe that combining BEV scene segmentation and 3D
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detection tasks further showcases the perceptual capabilities
of our model.

Results with Different Backbones. We also show in
Table A results with different backbones. From the last
three rows, BEVGuide benefits from a stronger backbone,
which extracts better sensory features for our sensor fu-
sion. Even with a more lightweight backbone (EfficientNet-
b4), BEVGuide outperforms existing methods with stronger
backbones (Swin-T and ResNet-101). Note that, we keep
the input size the same; on the other hand, the pretrained
models and training schedules have to vary so to be op-
timized for different backbones. The result validates (1)
the consistent effectiveness of our method on various per-
ception tasks; (2) our improvement is due to our proposed
method (e.g., attention module); and (3) our method can
further benefit from stronger backbones.

3. Inference Time
BEVGuide (Camera+Lidar) with Swin-T backbone runs

114.5ms per sample (8.7 FPS), which is on par with BEV-
Fusion running 119.2ms per sample. Our best-performing
model taking all three types of sensors as input runs
143.1ms per sample (7 FPS). The efficiency of our model
comes from the small number of transformer layers and the
relatively small feature maps that are passed into the trans-
former layers.

4. More Discussion on Model Design Choices
Integrating Multiple Frames. Following LiRaNet [13],
and Simple-BEV [2], we aggregate multiple frames of
Radar and Lidar data by calibrating and combining multi-
ple frames of their point clouds into a joint one as the model
input.

Calibration Assumption. BEVGuide can be easily ex-
tended to a multi-frame setting if the temporal calibration
assumption holds, as we can concatenate multiple sensory
frames as multiple channels for the sensor-specific feature
map. However, if the calibration is not guaranteed, we need
to design a temporal matching and/or interpolation module
before fusion. This is a challenging setting for all existing
methods, and we leave it as future work.

Sensor Failure Simulation. To simulate the sensor mal-
function, we can either set the sensory input to zero or set
the sensory feature map to zero. We believe setting “sensor
specific features” to zeros is the valid setting and the right
solution. Setting input to zero will cause the model to gen-
erate random noisy feature map, which can harm the feature
fusion process. Practically, we can design the system such
that when a sensor is offline, the hardware sends a signal
to our model which asks the feature maps to be changed to
zeros.
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