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In this supplementary, we first give a short overview of
prior work’s key aspects (Section A), then we provide addi-
tional details about the experimental protocol that was used
to obtain our results (Section B) and analyse in more de-
tails the results reported in the paper and the impact of our
approach on the stability of the search process (Section C).
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A. Summary of prior art
Overall, methods for augmentation search mostly differ

in key design choices that are highlighted in Table 1.

B. Experimental setup
In this section, we first describe the practical implemen-

tation of our gradient estimation, then we compare our mag-
nitude ranges to those of other methods, and finally we de-
scribe in more detail our search and evaluation protocols.

B.1. Gradient estimation

In this section, we describe the practical implementation
of the gradient estimates derived in our method section.

Method Optimization Prior-free∗ Full set Search time

AA [1] Reinfor. learning ✗ ✗ 5000
PBA [5] Population-based ✗ ✗ 5
Fast AA [7] Bayesian optim. ✗ ✗ 3.5
Faster AA [4] RELAX ✗ ✗ 0.23
DADA [6] RELAX ✗ ✗ 0.1
RA [2] Exhaustive search ✗ ✓ 25
TrivialA [8] No optimization ✗ ✓ NA
DeepAA [9] Greedy algorithm T✓∗∗ TT✓∗∗∗ 9
SLACK (Ours) REINFORCE ✓ ✓ 4

* Prior-free refers to methods that do not use any default transformations.
** DeepAA does not use default transformations during search but during pretraining.
*** DeepAA pretrains on a reduced dataset.

Table 1. Key aspects of automatic data augmentation methods.
Our approach, SLACK, tackles the corresponding bilevel opti-
mization problem using the REINFORCE gradient estimator. It
is prior-free (i.e. does not rely on default transformations) and can
use the full training set while maintaining a reasonable search time
(indicated in GPU hours, for search on CIFAR with WRN-40-2).

To optimize the augmentation policies, we minimize
an approximation to the upper-level objective F(ϕ) :=

Lval(θ
⋆(ϕ)) defined as F̂(ϕ) := Lval(θ̂(ϕ)), where we re-

placed the intractable lower-level solution θ⋆(ϕ) by an ap-
proximate solution θ̂(ϕ). Such approximate solution is
obtained by performing one gradient step to optimize the
lower-level objective starting from the current parameter θ,
i.e. θ̂(ϕ) := θ− η∇θLtrain(θ, ϕ). The gradient ∇ϕF is then
naturally approximated by ∇ϕF̂ which is computed by ap-
plying the chain rule:

∇ϕF ≈ ∇ϕF̂ = ∇θLval(θ̂(ϕ))
⊤∇ϕθ̂(ϕ).

The Jacobian ∇ϕF̂ can be computed explicitly using the
Score method which yields:

∇ϕθ̂(ϕ) = −ηEτ∼pϕ

[
∇θℓtrain(θ, τ)∇ϕ log pϕ(τ)

⊤] .
In practice, expectations over the data and augmentation

policies are estimated with batches. At a given iteration, we
sample Baug augmentations from pϕ and then apply each of
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them to a batch of training data Btrain from Dtrain to approx-
imate ∇ϕθ̂(ϕ). Finally, we use a batch Bval of data from
Dval to estimate the validation loss. Denoting Na, Nt, Nv

the size of the augmentation, training and validation batches
respectively, and

l̂val(θ) :=
1

Nv

∑
(x,y)∈Bval

[ℓ(y, fθ(x))] ,

l̂train(θ, τ) :=
1

Nt

∑
(x,y)∈Btrain

[ℓ(y, fθ(τ(x)))] ,

our gradient estimate can be expressed as

∇ϕF ≈ − η

Na
∇θ̂ l̂val(θ)

 ∑
τ∈Baug

∇θ l̂train(θ, τ)∇ϕ log pϕ(τ)
T


= − η

Na

∑
τ∈Baug

(
∇θ l̂val(θ)

T∇θ l̂train(θ, τ)
)
∇ϕ log pϕ(τ)

In other words, the upper-level gradient is a weighted sum
of the scores ∇ϕ log pϕ(τ), with the weights representing
the alignment between the gradients of i) the loss on the
training data transformed with τ (evaluated at θ), and ii)
the loss on the validation data (evaluated at θ̂, i.e. one step
ahead).

In practice, the lower-level learning rate decreases with a
cosine schedule. As we do not want our upper-level gradient
updates to shrink, we set η to the initial value of the lower-
level learning rate instead of its current value.

B.2. Magnitude ranges.

The ranges used for mapping the magnitudes to [0,1]
vary across methods; we indicate this mapping for each
method in Table 2. For transformations with respect to
which the datasets naturally exhibit symmetries (Shear,
Translate, Rotate, Enhance), once we have sampled a mag-
nitude, we randomly select a direction. Note that SLACK’s
ranges are larger than the usual ones (i.e. those of TA (RA)),
which gives more flexibility during the optimization of our
magnitude upper-bounds µ. The latter is initialized at 0.75.
Experimentally, we noted that this initialization should be
high enough to favour exploration and avoid over-fitting
during pre-training. We observed that any initialization in
the [0.75, 0.9] range consistently works well across datasets.

B.3. Image pre-processing

Table 3 indicates the image pre-processing choices on
ImageNet-100 and DomainNet for TrivialAugment [8], Do-
mainBed [3] and SLACK.

ImageNet-100 and DomainNet images have variable
original sizes. In the literature, training images are com-
monly resized with RandomResizeCrop. For testing, Triv-
ialAugment uses Resize(256)+CenterCrop((224,224)), pre-
serving the aspect ratio, while DomainBed directly applies

Resize((224,224)), degrading the aspect ratio but preserv-
ing the image content. For each method, we stick to the
authors’ choices, as we experimentally noted that they yield
the best results (e.g. using TrivialAugment’s pre-processing
for DomainBed degrades the performance, and vice-versa).

For SLACK, which does not apply RandomResizeCrop
by default, we preprocess the training data and valida-
tion/testing data in the same way. For training, random
cropping is applied instead of center cropping to fully ex-
ploit the data. For ImageNet-100, we use TrivialAug-
ment’s pre-processing. For DomainNet, we select the pre-
processing strategy by cross-validation after pre-training.

B.4. Policy search

Hyperparameters used for policy search are indicated in
Table 4. They are chosen to satisfy two criteria that we
found to be useful for obtaining a successful policy search:
i) the validation loss after re-training should be similar (ex-
perimentally, slightly lower) to the one obtained after pre-
training, and ii) the probability distributions should vary at
the same speed for all datasets. Our learning rate is 4 times
larger for re-training on CIFAR10 than on CIFAR100. We
observed that gradients on CIFAR10 are 4 times smaller in
norm than those on CIFAR100, and that re-scaling the up-
dates allows satisfying i) and ii) empirically. For Domain-
Net, we adapt the number of re-training steps to the dataset
size. A fixed lower-level learning rate for all datasets exper-
imentally satisfies i). We observed that the lower-level gra-
dients differ in scale for each dataset. Satisfying ii) requires
re-scaling the KL regularisation and accordingly changing
the upper-level learning rate (so that KL weight × upper-
level lr is constant).

The upper-level learning rate indicated in the Tables is
the one used for updating π. We divide it by 40 for the op-
timization of µ to ensure slower updates for the magnitude
parameter which we found to be sensitive to variations (or
by 10 for ablations removing the KL regularization).

B.5. Policy evaluation

The hyperparameters used for the evaluation phase are
indicated in Table 5. For CIFAR10 and CIFAR100, we use
the same hyperparameters as prior work.

C. Extended analysis

In this section, we further analyse the results of our
search algorithm. We first illustrate the policies learned for
all datasets. We then study in more detail the impact of our
multi-stage approach with KL regularization, comparing it
with single-stage (unrolled) and unregularized approaches
and illustrating their instability.



Application Transformation Method

TA (RA) TA (Wide) DomainBed Ours

Sampled

ShearX/Y [0, 0.3] [0, 0.99] - [0, 1]
Translate X/Y [0, 0.45]∗ [0, 32px]∗∗ - [0, 0.75]

Rotate [0, 30] [0, 135] - [0, 90]
Posterize [4, 8] [2, 8] - [2, 8]
Solarize [0, 255] [0, 255] - [0, 255]

Enhance∗∗∗ [0, 0.9] [0, 0.99] - [0, 0.99]
Cutout [0, 0.2] [0, 0.6] - [0, 1]

RandCrop - - - [0, 0.5]
RandResizeCrop - - - [0.05, 1]

Default ColorJitter∗∗∗∗ [0, 0.4] [0, 0.4] [0, 0.3] -
ImageNet/DomainNet RandResizeCrop [0.08, 1] [0.08, 1] [0.7, 1] -

Default CIFAR Cutout 0.5 0.5 NA -
RandCrop 0.125 0.125 NA -

Table 2. Our magnitude ranges compared to those used by other methods.
∗ TrivialAugment [8] uses [−0.31, 0.31], ∗∗ TrivialAugment [8] sets the upper-bounds in pixels, not in proportion
∗∗∗ Color, Contrast, Brightness, Sharpness, ∗∗∗∗ Color, Contrast, Brightness

Dataset Model Train Test

ImageNet-100 TrivialAugment RandResizeCrop((224,224)) Resize(256)+CenterCrop((224,224))
SLACK Resize(256)+RandomCro((224,224)) Resize(256)+CenterCrop((224,224))

DomainNet
TrivialAugment ImageNet RandResizeCrop(224,224) Resize(256)+CenterCrop(224,224)

TrivialAugment CIFAR Resize(256)+RandomCrop((224,224),padding=28) Resize(256)+CenterCrop((224,224))
DomainBed RandResizeCrop((224,224)) Resize((224,224))

SLACK (Clipart, Sketch, Quickdraw) Resize((224,224)) Resize((224,224))
SLACK (Painting, Infograph, Real) Resize(256)+RandomCrop((224,224)) Resize(256)+CenterCrop((224,224))

Table 3. Image pre-processing on ImageNet-100 and DomainNet.

Dataset Network Re-train iter Unrolled iter Batch size Lower lr Upper lr KL weight × Upper lr

CIFAR10/100 WRN-40-2/WRN-28-10 1000 400 8× 128 0.4 / 0.1 1 0.02
ImageNet-100 ResNet-18 2000 800 8× 256 0.1 0.5 0.005
DomainNet ResNet-18 800 - 1200 400 8× 128 0.1 0.625 - 1.25 0.01

Table 4. Hyperparameters used for search on CIFAR, ImageNet-100 and DomainNet.

Dataset Network Epochs Batch size Learning rate Weight decay

CIFAR10/100 WRN-40-2, WRN-28x10 200 128 0.1 0.0005∗

ImageNet-100 ResNet-18 270 256 0.1 0.001
DomainNet ResNet-18 200 128 0.1 0.001

Table 5. Hyperparameters used for training on CIFAR, ImageNet-100 and DomainNet. ∗: 0.0002 for CIFAR10 on WRN-40-2

C.1. Uniform distribution: ablations on prior work

In this section, we motivate our choice of a uniform mag-
nitude distribution, showing that it globally outperforms op-
timized magnitude models in prior work. To this end, we
directly evaluate the policies provided by the authors with-
out re-running their search procedure. We compare their
learned magnitude model with a simpler one that consists in
sampling the magnitudes uniformly on their [0, 1]-mapped
ranges, We study three baselines: DADA [6], FastAA [7]

and DeepAA [9]. Note that their policy results from a
search on CIFAR10, that they also use when evaluating on
CIFAR100. Results are reported in Table 6.

Parametrization. DADA and FastAA directly optimize a
probability distribution over the set of all possible compos-
ite transformations (sub-policies) and lean a single magni-
tude value for each transformation in a sub-policy. They
keep the top-k sub-policies for evaluation. DeepAA learns
to compose transformations in a greedy manner and dis-
cretizes the magnitude ranges, learning a probability for



Model Magnitude model CIFAR10 CIFAR100

WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

FastAA/DADA initialization Theirs 96.22 97.08 78.26 82.17
Uniform 96.37 97.25 79.10 82.80

FastAA, reported Original 96.4 97.3 79.3 82.7

FastAA, reproduced Original 96.4 97.22 79.11 82.82
(evaluation only) Uniform 96.37 97.30 79.15 82.84

DADA, reported Original 96.4 97.3 79.1 82.5

DADA, reproduced Original 96.33 97.19 79.07 82.05
(evaluation only) Uniform 96.37 97.35 78.97 82.57

DeepAA, reported Original - 97.56 - 84.02

DeepAA, reproduced Original 96.46 97.48 79.62 83.85
(evaluation only) Uniform 96.55 97.47 78.89 83.62

Table 6. Why learning the magnitude range? CIFAR10/100 accuracies for DADA, FastAA and DeepAA, when using their original
magnitude model, or a simpler one which samples in a uniform manner in their ranges.

each magnitude. We compare these learned magnitude val-
ues (FastAA, DADA) or learned probabilities (DeepAA) to
our approach based on a uniform sampling.
DADA/FastAA. Our approach compares favorably to
DADA’s and FastAA’s optimized models. We also com-
pare both approaches on their initial policy (equal probabil-
ities for all sub-policies, magnitudes set at mid-range). With
uniform magnitude sampling, their initial policy (sampling
among all possible sub-policies) performs similarly if not
better than their optimized one (sampling among their top-
k sub-policies).
DeepAA. Results on the policy provided by DeepAA are
more nuanced: using uniform sampling improves results
on CIFAR10 (on which their search was conduced) and de-
grades them on CIFAR100.

C.2. Visualization of the learned policies

CIFAR. The evolution of probability distributions for CI-
FAR10 and CIFAR100 and pie charts of the final policies
are illustrated in Fig. 1. It can be noted that Invert and
Solarize, known to be detrimental, are systematically dis-
carded. The policies learned are quite diverse, with differ-
ent leading transformations for each distribution but global
predominance of some transformations such as Cutout or
Rotate. It can also be noted that magnitudes upper-bounds
are in average higher for the larger WideResNet-28x10 net-
works: a larger learning capacity benefits more from harder
transformations.
ImageNet-100. The best policy found for ImageNet-100
is illustrated in Fig. 2. Interestingly, RandomResizeCrop
is ranked quite low, yet our policy yields results compa-
rable to TrivialAugment’s (with a 86.18 average accuracy
on this split), suggesting that other geometrical transforma-
tions such as Cutout, Rotate and ShearY are equivalently

beneficial for training on ImageNet-100. We can note rather
high magnitudes upper-bounds for the color jittering trans-
formation TrivialAugment also applies by default (Color,
Contrast, Brightness), which is consistent with the higher
performance of TrivialAugment’s (Wide) version compared
to (RA).

DomainNet. The policies found by SLACK on Domain-
Net are illustrated in the pie charts Fig. 3 for all domains.
Some similarities with policies found on CIFAR and Ima-
geNet can be noted. In particular, Invert and Solarize (that
only inverts part of the pixels) are systematically discarded
for all domains except Quickdraw. Invert is manually re-
moved from TrivialAugment’s baseline as it is known to be
detrimental, and this seems to generalize to other domains.
Also, Rotate and Cutout are globally favoured, similarly to
the policies found on CIFAR and ImageNet-100.

However some differences mark specificities to each do-
main: i) on the strength of the transformations: for exam-
ple, geometrical transformations are given high magnitudes
on Clipart and lower ones on Real, ii) on their probabil-
ities: color jittering transformations used for real images
are globally assigned a high probability for Real, Painting
and Infograph domains, and a much lower one for Clipart,
which suggests that changes in color, contrast or brightness
are less meaningful for this domain.

C.3. Avoiding instabilities with SLACK

In this section, we study how our augmentation policies
evolve when removing the KL regularization or when using
a single optimization stage instead of multiple ones, which
corresponds to standard unrolled optimization. Evaluations
in both settings are reported in Table 7.

We first show that unrolled optimization is globally un-
stable and easily collapses, justifying the need for a regular-
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(b) CIFAR10, WRN-28x19
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(c) CIFAR100, WRN-40x2
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(d) CIFAR100, WRN-28x10

Figure 1. Illustrations of best policies found for CIFAR10 and CIFAR100 on WideResNet-40x2 and WideResNet-28x10 architectures.
For each dataset and architecture, we show the evolution of the probability distribution π as training progresses (left) and the final learned
policy as a pie chart (right), where slice widths represent π and and slice radii represent µ.
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Figure 2. ImageNet-100 policy on the best search split

ization. We illustrate how entropy regularization prevents
collapse and yields competitive results, but at the cost of
high ‘local’ instability. These instabilities make the final
performance highly dependent on the choice of some hyper-
parameters, such as the learning rate. The necessity to over-
come these instabilities motivates our multi-stage procedure
with an adaptive anchoring for the regularization. Lastly,
we show that unregularized multi-stage optimization, while
more stable than unregularized unrolled optimization, does

not yield competitive results, confirming again the benefits
of our KL regularization.

Unregularized unrolled optimization. Unrolled optimiza-
tion is subject to two sources of instability: first, the approx-
imation θ⋆(ϕ) = θ̂(ϕ) with a single gradient step inher-
ently leads to wrong gradient updates; second, the REIN-
FORCE gradient estimation is theoretically exact but has a
high variance in practice when approximated in the context
of stochastic optimization. Fig. 4 illustrates these instabil-
ities: blindly following wrong gradient directions exacer-
bated by an oversampling of the dominant transformation
leads to a progressive collapse of the policy.

Unrolled optimization with entropy regularization. In
the case of a single-stage unrolled optimization, the KL reg-
ularization uses a uniform distribution as an anchor, which
corresponds to an entropy regularization. By maximiz-
ing the entropy, the algorithm encourages exploration of
the augmentation policies and prevents the divergence phe-
nomenon observed above. While this regularization leads to
competitive results as reported in Table 7, it does not mit-
igate the inherent instability of the gradient updates. On
the other hand, the multi-stage algorithm we proposed in
SLACK yields more stable gradient updates.
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(f) Clipart

Figure 3. Policies found on DomainNet. The three distributions from π forming the composite transformation are averaged.

CIFAR10 CIFAR100

SLACK variant Upper-level iterations Upper-level lr KL weight WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

Unrolled w/ KL (Fig. 5) 10000 0.25 0.005 96.30 ± .08 97.43 ± .04 79.54 ± .20 84.11 ± .13
SLACK w/o KL (Fig. 6) 10× 400 0.25 0 96.27 ± .05 97.06 ± .11 79.61 ± .13 83.79 ± .19

SLACK (Fig. 1) 10× 400 1 0.02 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16

Table 7. CIFAR10/100 accuracy with unregularized and single-stage approaches.

Multi-stage optimization without KL regularization. In
our multi-stage approach, θ⋆(ϕ̃) is well-approximated at the
beginning of each stage, as the model is re-trained with the
current policy ϕ̃. Gradient updates close to this policy are
‘trusted’ since our current θ after re-training stays close to
θ⋆(ϕ̃), meaning that we strongly mitigate the approxima-
tion inherent to unrolled optimization. Our KL regulariza-
tion encourages the policy to stay in this trust region and
without it, the stochasticity of the optimization combined
with the high variance from REINFORCE may drive the
policy away. Fig. 6 shows the evolution of our probabil-
ity distributions under an unregularized multi-stage search

with two different learning rates, one twice learger than the
other. This evolution is smoother than with single-stage un-
rolled optimization and also quite stable when using a small
learning rate, but this slows down convergence, yielding a
sub-optimal policy (see Table 7). The larger one leads again
to a progressive divergence: the policy is driven too far and
the θ⋆(ϕ̃) obtained after re-training becomes sub-optimal
for the current ϕ. In other words, the KL regularization al-
lows making large updates in the parameter space, while
remaining close to a reference/anchor policy.
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Figure 4. Evolution of the probability distributions π for CIFAR100 with unregularized unrolled optimization in a case of collapse.
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(a) The three distributions over transformations forming the composition
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(b) Average of the 3 distributions

Figure 5. Evolution of the distributions π for CIFAR100 with entropy-regularized unrolled optimization, on one of the search splits.

C.4. An ensembling approach

In this section, we investigate the effect of an ensem-
bling strategy for SLACK to reduce the variance of gradient
updates in the search phase. More precisely, the strategy
consists in independently training multiple models on the
lower-level loss while averaging their contributions to the
upper-level gradient. Each model is initialized (and subse-
quently re-initialized at each stage) based on a pre-training
with a different seed. This ensembling strategy was imple-
mented using multiple GPUs, where each GPU trains one
copy of the model and only the upper-levels gradients are
communicated and averaged across GPUs.

Results on CIFAR10/100 are reported in Table 8. While
there is a small improvement in most cases, the method still
has a strong computational overhead. Yet it might be a rele-
vant line of research for datasets for which the training pro-
cedure has a higher variance, e.g. smaller datasets where the
additional cost of ensembling is not a significant overhead.

C.5. Warm-start vs cold-start

In this section, we study the model behaviour when
searching with warm-start instead of cold-start. By warm-
start, we mean that re-training is performed starting from
the current network’s weights at the beginning of each stage
instead of re-initializing it to its pre-trained weights. We
experimentally observe that warm-start with the same hy-
perparameters as for cold-start leads to a progressive over-
fitting of the network. Increasing the lower-level learning
rate mitigates this phenomenon, but still yields sub-optimal
results as reported in Table 9. This suggests that re-training
from θ⋆0(ϕ0) gives a better estimate of θ⋆(ϕi) at stage i than
re-training from the biased state close to θ⋆(ϕi−1).
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(a) 0.25: The three distributions over transformations forming the composition
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(b) 0.25: Average of the 3 distributions
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(c) 0.5: The three distributions over transformations forming the composition
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(d) 0.5: Average of the 3 distributions

Figure 6. Evolution of the probability distributions π for CIFAR100 with unregularized multi-stage optimization using upper-level learning
rates of 0.25 and 0.5.

CIFAR10 CIFAR100

WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

SLACK 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16
Ensembling of SLACK (4 GPUs) 96.33 ± .08 97.48 ± .06 79.94 ± .13 84.01 ± .14

Table 8. CIFAR10/100 accuracy with ensembling strategy.

CIFAR10 CIFAR100

SLACK variant WRN-40-2 WRN-28-10 WRN-40-2 WRN-28-10

Warm-start 96.27 ± .09 97.05 ± .15 79.70 ± .11 83.90 ± .10
Cold-start (ours) 96.29 ± .08 97.46 ± .06 79.87 ± .11 84.08 ± .16

Table 9. CIFAR10/100 accuracy with cold start and warm start.
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