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In the following, we provide additional information re-
garding the Spring dataset and benchmark. In this context,
we present further example sequences and visualizations of
the methods we evaluated, we continue the discussion of
results from the main paper, list additional evaluation re-
sults excluding the sky region, and show screenshots of the
benchmark website.

1. Further examples of the Spring dataset
In Fig. 1, we show further example sequences of the

Spring dataset that illustrate its wide variety of content. For
each sequence, we show the left and right image of the
stereo camera, the corresponding left and right disparity, the
change of the left and right disparity both in forward and
backward temporal direction, as well as the left and right
optical flow also both in forward and backward temporal
direction, accordingly.

2. Visual benchmark results
Moreover, for the stereo, optical flow and scene flow

tasks, we show disparity/flow and error visualizations of the
methods we evaluated in Figs. 2 to 4.

3. Further discussion of results

Optical Flow. For optical flow, we can see that the han-
dling of high-resolution inputs plays an important role for
the performance on our benchmark. Many of the evalu-
ated networks estimate the optical flow on a lower resolu-
tion, followed by a learned upsampling; FlowFormer [2],
RAFT [11] and GMA [6] work on 1/8th of the original res-
olution, GMFlow [14] on 1/4th. The best-performing MS-
RAFT+ [4, 5] works on an even higher resolution, 1/2 of
the original resolution, also followed by a learned upsam-
ling. In general, methods with learned upsampling lead the
benchmark, a strategy closely related to FlowNet2 [3] rank-
ing third. Their architecture consists of modules predicting
optical flow on 1/4th of the original resolution, but then uses
a fusion module that given nearest-neighbor upsampled in-
puts predicts results on the original resolution. In contrast,
the coarse-to-fine pyramid strategy of SPyNet [9] as well as
the purely bilinear 4× upsampling of PWCNet [10] did not
yield as good results as the aforementioned strategies.

When comparing EPE results from our benchmark to
EPE results from the Sintel benchmark, it is noticeable that
numbers on our benchmark are on a lower level. We at-
tribute this mainly to the fact that the Sintel dataset has a
focus on action sequences with very strong motion, while
Spring addresses high-resolution and high-detail content.
Although there are also several high-speed scenes in Spring,
they cover a smaller part of the dataset. Further, with the
super-resolution ground truth, Spring uses a more permis-
sive evaluation methodology than Sintel.

Stereo. In case of stereo, one can observe that the best per-
forming methods on the Spring benchmark operate on mod-
erately subsampled versions of the input images – i.e. typi-
cally 1/3 or 1/4 of the original resolution – while they rely
on hierarchical concepts at the same time. More precisely,
ACVNet [13] uses three-level adaptive patch matching with
attention-based feature concatenation, RAFT-Stereo [7] ex-
ploits a four-level correlation pyramid, multi-level recurrent
update operators and a three level coarse-to-fine estimation
scheme, and LEAStereo [1] learns a compact network with
2-level feature extractor and 3-level matching module based
on a neural architecture search. GA-Net [15] which ranks
last in the Spring benchmark is the only network that di-
rectly operates on the original resolution. While it considers
guided aggregation layers, however, it does not exploit hier-
archical concepts. From all considered methods, ACVNet
performs best. This can not only be seen from the corre-
sponding table in the main paper, but also from a visual
comparison of the results in Fig. 2. While it shows slight
upsampling artefacts, ACVNet seems most robust regrading
the background estimation, potentially due to the attention-
based feature concatenation.

Scene Flow. In case of scene flow, two of the considered ap-
proaches (RAFT-3D [12], M-FUSE [8]) rely on a RGB-D
setting. This in turn requires the pre-computation of stereo
results before estimating the scene flow. In contrast, Cam-
liFlow seeks to better preserve the 3D structure of the
scene by integrating LiDAR input that is converted to point
clouds. However, in case of stereo input, CamliFlow also
has to rely on external stereo results before constructing
these point clouds. Interestingly, all three approaches show
problems with different components of the scene flow. M-
FUSE that extends RAFT-3D by considering temporal in-
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formation and using LEAStereo as a stereo baseline shows
only moderately accurate results for the optical flow – al-
though the stereo input seems be of good quality. In con-
trast, RAFT-3D that relies on GA-Net shows larger errors in
the stereo estimation that eventually propagate to the over-
all scene flow. Finally, CamliFlow has severe problems
obtaining useful disparity estimates for the second frame
pair, most probably due to the same difficulties as RAFT-
3D with the underlying GA-Net approach. Another obser-
vation that might explain the comparably poor performance
of CamliFlow is its dedicated background estimation mod-
ule. Since it is trained on Cityscapes and KITTI it is likely
not to generalize to other type of data. In terms of overall
accuracy, M-FUSE slightly outperforms MS-RAFT. In con-
trast, CamliFlow gives significantly worse results. As in the
the stereo case, these findings are not only reflected in the
corresponding results in the main paper. They can also be
seen from the visual comparison in Fig. 4.

4. Additional results for non-sky regions
As described in the main paper, we provide additional

evaluation results that consider non-sky pixels only. The
corresponding rankings for stereo, optical flow and scene
flow can be found in Tabs. 1 to 3. As expected, the difficulty
decreases such that the overall errors are lower, resulting in
a few ranking order changes. The largest decrease is no-
ticeable for the stereo benchmark, showing that the sky re-
gions are particularly difficult for the current set of methods.
At the same time, it is expected that future stereo methods
trained on datasets with sky regions will perform better.

5. Screenshots of the benchmark website
Finally, in Figs. 5 to 12, screenshots of the Spring bench-

mark website are shown. These screenshots include the
benchmark start page (Fig. 5), the current benchmark rank-
ings for stereo (Fig. 6), optical flow (Fig. 7), and scene flow
(Fig. 8), the benchmark evaluation sites of the three leading
methods, i.e. ACVNet (Fig. 9), MS-RAFT+ (Fig. 10), and
M-FUSE (Fig. 11), as well as the benchmark page to sign
up for an evaluation account (Fig. 12).
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Figure 1. Example sequences from the Spring dataset. First row: Left and right images of the stereo camera, second row: Corresponding
left and right disparity, third row: Change in disparity for forward left, backward left, forward right and backward right, fourth row: Optical
flow visualization for forward left, backward left, forward right and backward right. Please note that we show the disparity change for
visualization purposes while the dataset contains the target frame disparity.
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Figure 2. Visualizations from the stereo benchmark. Top row: predicted disparity, bottom row: absolute error visualization and color code.
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Figure 3. Visualizations from the optical flow benchmark. Top row: predicted optical flow, bottom row: EPE error visualization.

Table 1. Stereo results on our benchmark. We show additional evaluation metrics computed only on the non-sky pixels of the dataset.

1px Abs D1
Method total low-det. high-det. matched unmat. s0-10 s10-40 s40+

RAFT-Stereo 9.92 9.56 32.14 8.46 43.39 5.16 9.99 17.03 0.68 3.67
ACVNet 11.16 10.77 35.13 9.44 50.63 6.32 11.33 18.12 1.14 4.59
LEAStereo 16.73 16.36 39.65 14.91 58.50 7.63 13.84 39.39 2.44 7.42
GANet 18.42 18.03 42.16 16.51 62.09 7.32 16.41 41.48 2.59 7.77
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Figure 4. Visualizations from the scene flow benchmark. From top to bottom: predicted reference disparity, reference disparity error,
predicted target disparity, target disparity error, predicted optical flow, optical flow error, combined scene flow error.

Table 2. Optical flow results on our benchmark. We show additional evaluation metrics computed only on the non-sky pixels of the dataset.

1px EPE Fl WAUC
Method total low-det. high-det. matched unmat. rigid non-rigid s0-10 s10-40 s40+
MS-RAFT+ 4.84 4.46 61.80 4.18 32.41 1.84 25.96 1.43 4.93 34.60 0.63 2.08 93.64
RAFT 5.25 4.86 64.30 4.47 37.74 2.15 27.08 1.75 5.15 36.39 0.71 2.09 92.28
FlowFormer 5.50 5.11 64.30 4.75 36.60 2.16 29.07 2.09 5.54 35.37 0.69 2.14 92.50
GMA 5.61 5.21 66.41 4.83 38.31 2.40 28.24 2.27 5.28 36.06 0.87 2.23 91.93
FlowNet2 6.04 5.65 64.31 5.05 47.31 2.72 29.39 1.72 5.72 45.05 0.84 2.27 91.62
GMFlow 8.95 8.50 76.64 7.65 63.10 4.94 37.24 4.01 9.66 50.34 0.94 2.75 82.98
SPyNet 25.83 25.49 77.88 24.58 77.74 21.46 56.61 19.68 23.42 87.28 3.23 8.72 70.71
PWCNet 81.57 81.57 81.76 81.37 90.07 82.07 78.09 80.57 82.09 88.82 2.25 4.17 46.40

Table 3. Scene flow results on our benchmark. We show additional evaluation metrics computed only on the non-sky pixels of the dataset.

1px SF 1pxD1 1pxD2 1pxFl

Method total low-det. high-det. matched unmat. rigid non-rigid s0-10 s10-40 s40+
M-FUSE (F) 31.36 30.68 64.35 28.79 67.90 25.39 73.36 14.08 23.58 67.67 13.05 16.73 21.26 18.38
RAFT-3D (K) 33.23 32.68 60.54 30.54 71.57 27.94 70.51 28.43 24.22 62.19 13.20 27.96 28.64 11.82
CamLiFlow (F) 46.85 46.34 72.05 44.75 76.75 42.82 75.24 11.98 42.44 89.06 31.88 18.42 40.62 21.79
M-FUSE (K) 60.03 59.81 70.98 58.26 85.25 57.42 78.41 78.19 48.97 74.81 20.36 49.10 54.22 19.50
RAFT-3D (F) 77.57 77.43 84.67 77.14 83.63 78.25 72.80 80.42 81.66 63.87 67.58 18.42 72.27 48.80
CamLiFlow (K) 84.35 84.21 91.19 83.55 95.65 83.00 93.85 55.39 87.79 99.85 69.03 27.96 74.99 67.72



Figure 5. Spring benchmark: Start page.

Figure 6. Spring benchmark: Stereo ranking.

Figure 7. Spring benchmark: Optical flow ranking.

Figure 8. Spring benchmark: Scene flow ranking.

Figure 9. Spring benchmark: Example of stereo result.



Figure 10. Spring benchmark: Example of optical flow result.

Figure 11. Spring benchmark: Example of scene flow result.

Figure 12. Spring benchmark: Registration form.
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