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This supplementary material contains:

• Detailed explanation of the datasets (§1).

• Additional Ablation Study (§2).

• Difference with prior works (§3).

• More qualitative results (§4).

• Feature Map Visualizations (§5).

• Future Work (§6).

1. Dataset Details
1.1. Burst Super-resolution

(1) SyntheticBurst dataset consists of 46,839 and 300 RAW bursts for training and validation, respectively. Each burst
contains 14 LR RAW images generated synthetically from a single sRGB image (each of size 48×48 pixels). Each sRGB
image is first converted to RAW camera space using the inverse pipeline [1]. Next, the burst is generated with random
translations and rotations. Finally, the LR burst is obtained by applying the bilinear downsampling followed by Bayer
mosiacking, sampling and noise addition operations.

(2) BurstSR dataset [1] consists of 200 real burst images, with each having 14 LR RAW images. LR-HR pair for this
dataset has been acquired with Samsung Galaxy S8 smartphone camera and DSLR camera, respectively. From the acquired
200 RAW burst sequences, crops of spatial size 80×80 have been extracted for obtaining a training set consisting of 5405
images and validation dataset comprising of 882 images.

1.2. Burst Denoising

Following the experimental settings of [2], we utilize 20k samples from the Open Images [6] training set to generate the
synthetic noisy bursts of burst size 8 and spatial size of 128×128. We evaluate our approach on the grayscale and color burst
denoising datasets in [8] and [10]. Both these datasets contains 73 and 100 bursts, respectively. For both these datasets, a
burst is generated synthetically by applying random translations to the base image. The shifted images are then corrupted by
adding heteroscedastic Gaussian noise with variance σ2

r+σsx. Here, x denotes the clean pixel value, and (σr, σs) denotes the
read and shot noise parameters, respectively. While training, the noise parameters (log(σr), log(σs)) are sampled uniformly
in the log-domain from the range log(σr) ∈ [−3,−1.5] and log(σs) ∈ [−4,−2]. The proposed GMTNet is then evaluated on
4 different noise gains (1, 2, 4 and 8) corresponding to the noise parameters (log(σr), log(σs)) → (-2.2, -2.6), (-1.8, -2.2),
(-1.4, -1.8), and (-1.1, -1.5), respectively. Note that the noise parameters for the highest noise gain, i.e., 8 are unseen during
training. Therefore, the performance of this noise level is an indication of the generalization of the network to unseen noise.
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1.3. Burst Low-light enhancement
We train and evaluate our model on the See-in-the-Dark (SID) dataset [3], that consists of short exposure burst raw images

taken under extremely dark indoor (0.2-5 lux) or outdoor (0.03-0.3 lux) scenes. All these images are acquired with three
different exposure times of 1/10, 1/25 and 1/30 seconds, where the corresponding reference images are obtained with 10 or
30 seconds exposures depending on the scene. We evaluate the performance of our models on the Sony subset, that contains
161, 36 and 93 distinct burst sequences for training, validation and testing, respectively. The number of burst images varies
from 2-10 for every distinct scene.

2. Additional Ablation Study
2.1. Effect of our resolution transfer and aligned feature enrichment modules

As shown in Figure 1, without the proposed resolution transfer module (RTM) and the aligned feature enrichment (AFE)
module, the super-resolution results on real-world photos are blurry.

Figure 1. (a) Qualitative Comparison on BurstSR dataset without (W/O) and with Resolution Transfer Merging (RTM) module. Our
module benefits from the efficient extraction of features in both low and high-resolution space and makes effective use of information
to complete the restoration of the sharp regions, (b) Effect of the proposed aligned feature enrichment (AFE) module in our proposed
GMTNet. Images recovered by employing AFE module have lesser artifacts when compared to images obtained without it.

3. Difference with prior works
In this work, we propose a network that jointly performs denoising, demosaicking and super-resolution. We contribute

in all the three components of burst processing i.e. alignment, fusion and up-sampling. Table 1 highlights the differences
between the popular burst restoration approaches [1, 4, 9] and our GMTNet. First, in contrast to the existing alignment mod-
ules, the proposed multi-scale burst feature alignment (MBFA) approach denoises and implicitly aligns the burst features at
multiple scales using our multi-kernel gated attention (MKGA) and attention-guided deformable alignment (AGDA) mod-
ules, respectively. Our MBFA also enriches the aligned burst features through back-projection mechanism and extracts the
local and non-local features via encoder-decoder based transformer. As shown in Table 1, existing DBSR [1], EDVR [9] and
BIPNet [4] lack some of these properties: feature denoising, multi-scale feature alignment, local-non-local feature extraction,
back-projection (feature enrichment), and implicit feature alignment.

Keeping in consideration that different neighboring frames are not equally informative due to occlusion/blurry regions,
and misalignment arising from the preceding alignment stage may adversely affect the reconstruction performance, we pro-
pose the transposed attention feature merging module to adaptively pay attention to the current frame, that is more similar
to the reference frame. To capture the similarity between frames, EDVR [9] process the incoming frames in a pyramidal
manner through a temporal and spatial attention-based fusion module. This approach [9] focuses more on correlating the
frames locally and does not consider the long-range pixel interactions as well as inter-dependencies among different chan-
nels. BIPNet [4] propose the pseudo burst mechanism to adaptively merge the frames by considering the inter-dependencies
between the channels, but it is quite computationally extensive. The weighted summation-based fusion approach in DBSR [1]
applies a softmax function onto the aligned frames, and reference features to attentively assign weights to the aligned and
misaligned regions. However, none of the above approaches considers the merits of computing both the local and non-local



Base frame DBSR [1] LKR [7] MFIR [2] BIPNet [4] Ours

Figure 2. Comparisons for ×4 burst SR on SyntheticBurst [1]. The proposed approach produces more sharper and visually-faithful results
than other competing approaches.

correlations among the incoming frames. Our two-stage parallel strategy targets at computing both these relations among
the frames by considering long-range pixel dependencies between the reference and supporting frames and also within the
supporting frames to ease the fusion process.

The up-sampling module generates the output high-resolution image from the fused feature map. Unlike the compared
approaches that utilize either conventional or recent up-sampling techniques, our proposed resolution transfer feature up-
sampler (RTFU) considers the merits of utilizing both recent (slow and more accurate) and conventional up-samplers (fast
and less accurate) to get into high-resolution space. Additionally, as shown in the Table 1, the up-sampling strategies in burst
restoration methods either use progressive up-sampling (for generating intermediate SR predictions at multiple resolutions)
or direct up-sampling, but unlike ours, none of these approaches combines both these strategies in a single network.

Table 1. Comparison between the proposed and existing alignment, fusion and up-sampling modules based on their properties.

Tasks DBSR [1] EDVR [9] BIPNet [4] Ours

Alignment Explicit multi-scale ap-
proach, local feature
extraction

Implicit multi-scale ap-
proach, local feature
extraction

Implicit single-scale approach, denois-
ing, local feature extraction, back-
projection

Implicit multi-scale approach, denoising, local-
non-local feature extraction, back-projection, fea-
ture refinement

Fusion Weighted summation,
local feature extraction

Local feature correla-
tion

Inter-frame interaction, local feature ex-
traction

Inter-frame interaction, local-non-local feature cor-
relations

Up-sampling Direct, pixel-shuffle Direct, bilinear inter-
polation

Progressive, transposed convolution Direct, progressive, pixel-shuffle, bilinear, bicubic
interpolation, resolution-transfer

4. Additional Visual Results
We present more images reconstructed by our GMTNet and those of the other competing approaches as qualitative ex-

amples for all the considered tasks. The results demonstrated in Figure 2 and Figure 3 clearly show the true potential of our
method in successfully recovering fine-grained details from extremely challenging LR images in ×4 burst SR task for syn-
thetic and real images, respectively. Additionally, results in Figure 4 and Figure 5 show that our method performs favorably
well on both color [10] and gray-scale [8] noisy images. Particularly, it generates output more closer to the ground-truth
compared to the existing SoTA approaches. Further, we provide more visual comparisons for burst low-light enhancement in
Figure 6 to show the effectiveness of our model.
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Figure 3. Comparisons for ×4 burst super-resolution on Real BurstSR dataset [1]. The proposed approach produces more sharper and
cleaner results than other competing approaches.

HR Image BPN [8] MFIR [2] BIPNet [4] Ours Ground Truth

Figure 4. Comparisons for burst de-noising on color dataset [10]. The image reproduction quality of our proposed GMTNet is more faithful
to the ground-truth than other competing approaches.

5. Feature Map Visualization
Here, we have visualized the feature maps of all the (14) frames before and after applying the proposed alignment (MBFA)

(Fig. 7 and 8). We note that all the unaligned input frames get aligned well with the reference frame, thereby demonstrating
the effectiveness of the proposed MBFA module. Similarly, in Figure 9, we provide feature map visualizations before and
after applying the resolution transfer merging (RTM) module of the proposed up-sampler (RTFU). It can be seen that for
any Ur and Us pair, the Us maps have more details than the Ur maps. Our RTM module benefits from the efficient feature
extraction in both low and high-resolution spaces. Thus, we can conclude that the proposed modules enhances the feature
representations as well as performs the assigned task dedicatedly.
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Figure 5. Comparisons for burst de-noising on gray-scale dataset [8]. Our proposed GMTNet preserve the fine image details.

6. Future Work
While GMTNet emerges as a strong backbone architecture across several benchmarks, the proposed modules are exten-

sible and can be well transferred to other burst image restoration applications including de-blurring and satellite imaging.
Also, the proposed modules are suitable for majority of video restoration tasks.
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Figure 6. Comparisons for burst low-light enhancement on SONY-subset [3]. GMTNet generates sharper result with structural fidelity.



Figure 7. Feature map visualization before and after the proposed multi-scale burst feature alignment (MBFA) module on sample burst
images from Synthetic BurstSR dataset. It is clearly observed that the proposed MBFA module aligns the burst frame features implicitly
with respect to the reference frame features. Highlighting point is that the proposed MBFA module is implicitly trained along with the
other modules of proposed network. We have not followed any separate supervision to train the MBFA module for alignment task.



Figure 8. Feature map visualization before and after the proposed multi-scale burst feature alignment (MBFA) module on sample burst
images from Synthetic BurstSR dataset. It is clearly observed that the proposed MBFA module aligns the burst frame features implicitly
with respect to the reference frame features. Highlighting point is that the proposed MBFA module is implicitly trained along with the
other modules of proposed network. We have not followed any separate supervision to train the MBFA module for the alignment task.



Figure 9. Feature map visualization before and after the proposed resolution transfer merging (RTM) module on sample burst images
from Synthetic BurstSR dataset. It is clearly observed that for any pair of Ur and Us, latter is having more details than former one. The
reason behind this is every Us feature response is obtained by fusion of all the Ur feature responses. Thus, our RTM module benefits
from the efficient extraction of features in both low and high resolution space and makes more effective use of information to complete the
restoration of sharp regions.
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