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1. Details about Identifying Pattern Imbalance
Representation Visualization. We first extract the output
features before the full-connected layer of samples belong-
ing to certain classes (e.g. class 0-airplane, 3-cat, 5-dog).
Then TSNE is applied to reduce the dimension of these fea-
tures to 2. We separately evaluate the model of epoch 10
and epoch 100 as not fully trained model and fully trained
model. Classification loss is re-scaled to facilitate visual-
ization, as l ← log(l + 1). Similar settings hold for the
visualization of the activation path. As observed in the ex-
perimental results, both representations and activation paths
show a clear imbalance.
Clustering. The classification loss of each sample is a
scalar, and can not be directly clustered. We repeat each
scalar to a bivariate vector to facilitate clustering. For clus-
tering, we employ the K-means algorithm [1] with the ran-
dom state set as 1 and cluster number fixed as 10.
Why not choose OOD datasets instead of CIFAR10?
Considering that there are multiple domains in one cate-
gory in OOD datasets, it will naturally show an obvious
imbalance, which will also make it difficult for us to find
a suitable comparison to evaluate the clustering consistency
criterion. Therefore, we tend to choose simpler settings and
conduct experiments on the CIFAR10 dataset to verify that
even if the model performs well on average, there still exists
some modes that have not been fully optimized.

2. Theoretical Analysis
2.1. Upper Bound of the Number of Seed Categories

Once we determine a threshold ξ, the adjacent between
samples is hence determined. It is apparent that the thresh-
old dominates the density of edges in the graph, thus affect-
ing the seed category number. We assume that the number
of minimum adjacent points for a sample in the dataset is
δ, which satisfies δ = F(ξ), where F is a non-increasing
function. Then according to Arnautov-Payan theorem [2],
we can get the following theorem,
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Theorem 1 (Upper bound of seed category) For a dataset
with N samples and threshold ξ, then the upper bound of
seed categories satisfies,

|S| ≤ N [1 + ln(1 + F(ξ))]
1 + F(ξ)

(1)

, where |S| denotes the number of seed category.

Proof:
For the graph where the samples represent the vertices

of the graph and the adjacent relationship between samples
represents the edges between vertices, we can know this
graph possesses N vertices with minimum degree δ.

We define all the vertices set as V , and then we construct
a random subset X of V (X ⊂ V ). Each sample in X is
taken from V with a probability of p. Then the expectation
scale of X is,

E(|X|) = Np (2)

We regard the subset X as the candidate for seed set S.
We can thus define the random set YX , which represents the
samples in V −X that do not have an adjacent sample in X ,
that is, for sample v ∈ YX , we can not find a sample x ∈ X
that v is subordinate to x. This can also be interpreted as for
v ∈ YX , any adjacent samples of v not in X , so

P (v ∈ YX) = P (v and its adjacent samples not in X)

= (1− p)1+d(v)

≤ (1− p)1+δ

(3)

Then we can obtain,

E(|YX |) ≤ N(1− p)1+δ (4)

It is apparent that X ∪ YX can be served as a seed set,
and the number of seed categories can be represented as,

E(|X ∪ YX |) ≤ E(|X|+ |YX |) ≤ E(|X|) + E(|YX |)
= Np+N(1− p)1+δ ≤ Np+Ne−p(1+δ)

(5)
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Since we want to find the minimal seed set, which means
we want to find the minimal value of Np+Ne−p(1+δ). We
can then obtain that when p = ln(δ+1)

δ+1 , the expectation get
the minimum value,

N [1 + ln(δ + 1)]

δ + 1
(6)

Therefore we can get

|S| ≤ N [1 + ln(δ + 1)]

δ + 1
, where δ = F(ξ). (7)

2.2. Scale of Seed Category

We add a strong constraint to our assumption that the
samples between different seed categories are not adjacent.
In this way, we can get the following theorem,

Theorem 2 (Scale of seed category) For a dataset with N
samples and the samples between different seed categories
are not adjacent. The scale of the seed category satisfies
b < |Si| < a if and only if the number of adjacent sample
pairs satisfies,

b2⌊N
b
⌋−N < E(N) ≤ (a− 1)

1
aN2− 1

a + (a− 1)N. (8)

We can also deduce a similar upper bound with a more con-
cise form,

E(N) ≤ (1− 1

a− 1
)
N2

2
(9)

, where |Si| represent the scale of a certain seed category
Si.

Proof:
The lower bound is obvious. Here we only prove the

upper bound.
We can model the adjacency relationship between sam-

ples as a bipartite graph with N points on both sides. The
problem can be transformed into a 0 − 1 matrix of M ∈
RN×N , where there is no all 1 sub-matrix ofM0 ∈ RA×A,
and at this time, how many element 1 can there be in the
matrix at most.

We count the following structures. We define that the left
and right point sets of the bipartite graph are V1 and V2, and
then assume that the structure p is selecting a point u from
V1 with a adjacent samples in V2. Let’s start with point u in
V1, and the selection methods of a samples in V2 is Ca

d(u),
then the total selections are

∑
u∈V1

Ca
d(u) = |S|. We can

also start with a samples in V2. And once we determine a
point in V2, there are at most a− 1 u in V1, otherwise there
will be an all 1 sub-matrix ofM0 ∈ RA×A. We can thus
obtain, ∑

u∈V1

Ca
d(u) ≤ Ca

N (a− 1) (10)

Following Jensen Inequality, f(x) = Ca
x is a convex func-

tion, then,∑
u∈V1

1

N
Ca

d(u) ≥ Ca
1
N

∑
u∈V1

d(u) = Ca
|E|
a

(11)

So,

NCa
|E|
a

≤
∑
u∈V1

Ca
d(u) ≤ Ca

N (a− 1)

=
N(N − 1)...(N − a+ 1)

a!
(a− 1)

(12)

Retraction is conducted at both sides, and then,

N
( |E|

N − a+ 1)a

a!
< NCa

|E|
a

<
Na

a!
(a− 1) (13)

After simplification, we can obtain,

E(N) ≤ (a− 1)
1
aN2− 1

a + (a− 1)N (14)

The proof of another upper bound is presented as fol-
lows,

Let the number of points be N and for every point xi, the
number of neighboring points is d(xi). Suppose a initial set
Cπ = ∅, for all points, we introduce a random permuta-
tion O : x1, x2, x3, ..., xn. For a certain permutation, if
all points in front of xi are xi’s neighboring points, we put
xi into Cπ . Finally, all point pairs in Cπ are neighboring
points.

The probability of a certain point in Cπ is p = 1
N−d(xi)

,
then the mathematical expectation of the size of C is,

|Cπ| =
∑
xi

1

N − d(xi)
(15)

Suppose the size of maximal cluster in dataset is ω(D), we
apply Pigeonhole Principle [5] and get:

ω(D) ≥
∑
xi

1

N − d(xi)
(16)

What we need to satisfy is,

a ≥ ω(G) ≥
∑
vi

1

N − d(vi)
(17)

According to Cauchy Inequality,

a
∑
vi

(N − d(vi)) ≥
∑
vi

1

N − d(vi)

∑
vi

(N − d(vi)) ≥ N2

(18)
So,

a(N2 − 2|E|) ≥ N2 (19)

We can thus obtain,

|E| ≤ N2

2
(1− 1

a− 1
) (20)



2.3. Convergence Analysis

Since we have a similar training process with Group-
DRO [4], we have similar conclusions about the conver-
gence of the algorithm,

Theorem 3 (Convergence analysis) Suppose the classifica-
tion loss is convex and nonnegative, B∆-Lipschitz continu-
ous and bounded by Bl, and model parameter ∥θ∥2 ≤ BΘ.
The expectation error ϵt at step t satisfies,

E[ϵt] ≤ 2|S|
√

10(B2
ΘB

2
∆ +B2

l log |S|)
t

(21)

Proof:
We follow the convergence analysis in GroupDRO [4]

that,

E[ϵt] ≤ 2m

√
10(B2

ΘB
2
∆ +B2

l logm)

t
(22)

, where m represents the number of all domains. Here the
optimization unit is the seed category. So we replace the
domain number m with the number of seed category S, thus
obtaining the convergence analysis of our method,

E[ϵt] ≤ 2|S|
√

10(B2
ΘB

2
∆ +B2

l log |S|)
t

(23)

3. Proof of Calculating Seed Category by Loss
Ranking

Supposing P and Q are two unit distributions,

JS(P ||Q) =
1

2
KL(P ||P +Q

2
) +

1

2
KL(Q||P +Q

2
)

(24)
Following f-GAN [3], we define f as the generator function
f : R+ → R of JS divergence, and f∗ as its conjugate
function, which is defined as f∗(t) = sup

u∈domf
{ut− f(u)}.

For JS divergence, let f(u) = −(u + 1) log 1+u
2 + u log u

and correspondingly f∗(t) = − log(2− et), then following
f-GAN [3],

JS(P ||Q) =

∫
q(x)f(

p(x)

q(x)
)dx

=

∫
q(x) sup

t∈domf∗

{
t
p(x)

q(x)
− f∗(t)

}
≥ sup

T∈T

(∫
p(x)T (x)dx−

∫
q(x)f∗(T (x))dx

)
= sup

T∈T
Ex∼P [T (x)]− Ex∼Q[f

∗(T (x))]

(25)

where T represents a arbitrary mapping from data point x
to conjugate variable t and T represents qualified mapping
groups.

We assume that T is an optimized model with learnable
parameters θ following f-GAN [3], and its optimal solution
determines a classification for distribution P and Q. We
rewrite T as a combination of feature extraction function
Vw and activation function gf , i.e., Tθ(x) = gf (Vw(x)).
Let the activation function be,

gf (v) = log 2− log(1 + e−v) (26)

and D(v) = 1/(1+e−v). Then the overlapping of distribu-
tion P and Q , which is denoted as DPQ, can be represented
as,

DPQ = −Ex∼P [gf (Vw(x))]− Ex∼Q[−f∗(gf (Vw(x)))]
(27)

Then,

DPQ = −Ex∼P [log
2

1 + e−Vw(x)
]

− Ex∼Q[log(2− e
log 2

1+e−Vw(x) )]

= −Ex∼P [log
1

1 + e−Vx(x)
]

− Ex∼Q[log
e−Vw(x)

1 + e−Vw(x)
] + log 4

= −Ex∼P [logD(Vw(x))]

− Ex∼Q[log(1−D(Vw(x)))] + log 4

(28)

We can omit the constant log 4. If P and Q are balanced,
the overlapping metric is equivalent to cross-entropy loss,

DPQ = −Ex[yx log(D(Vw(x)))

+ (1− yx) log(1−D(Vw(x)))]

= Ex[CEVw(x)(x)]

(29)

where yx = 1(x ∈ P ).
Due to the symmetry of JS divergence, it can be verified

that the above indicator also holds symmetry property,

DPQ = Ex∈P [logDp(Vw(x))] + Ex∈Q[log(1−Dp(Vw(x)))]

= Ex∈P [log(1−Dq(Vw(x)))] + Ex∈Q[logDq(Vw(x))]

= DQP

(30)
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