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A. Implementation Details

Here, we provide additional implementation details.
First, we discuss the Point-Voxel [1] model which is used

to process the partially-denoised point cloud at each step
of the diffusion process. The Point-Voxel [1] model pro-
cesses a point cloud using two branches simultaneously:
a point-based branch and voxel-based branch. The point-
based branch is a simple multi-layer perceptron which is
applied to each point independently, as in PointNet [2, 3]
(without the global pooling in the final layer of PointNet).
The voxel-based branch first discretizes the points into a
coarse voxel grid of size 1283, which is fed into a 3D U-Net.
As in [1], the 3D U-Net consists of four downsampling (“Set
Abstraction”) layers followed by four upsampling (“Fea-
ture Propogation”) layers. Due to this fine-to-coarse-to-fine
structure, the network is able to capture both global and local
shape information. Additionally, to make the model aware of
the current timestep of the diffusion process, we concatenate
an embedding of the current timestep to the point features at
the input to each layer.

Second, we discuss the implementation of the projec-
tion feature. We perform the projection by rasterizing the
point cloud from the given camera view. We utilize the
PointRasterizer class of PyTorch3D using a point ra-
dius of 0.0075 and 1 point per pixel. For each point in the
point cloud, if the point is rasterized onto a pixel in the input
image, we concatenate the image features corresponding to
the pixel onto that point’s existing feature vector (which is
simply a sinusoidal positional embedding of its current posi-
tion) for input to the model. Additionally, we concatenate
the value of the (binary) object mask at the given pixel and a
two-dimensional vector pointing from the pixel to the closest
pixel in the mask (i.e. a two-dimensional distance function
corresponding to the mask region; this is the zero vector
inside the mask and a nonzero vector outside the mask). If a
pixel is not rasterized to a point (for example, because it is
occluded by another point), we concatenate a vector of zeros
in place of all the quantities above.

B. Evaluation Metric.
As described in the main paper, we use the F-score metric

proposed by Tatarchenko [4]. For two point clouds X and
X̂ , it is defined as

F-Scored(X, X̂) =
2Pd(X, X̂)Rd(X, X̂)

Pd(X, X̂) +Rd(X, X̂)
(1)

where Pd and Rd denote precision and recall, respectively,
and d is a fixed threshold distance d. Precision and recall are
defined as

P (d) =
1

nX̂

∑
p̂∈X̂

[
min
p∈X

||p− p̂|| < d

]
(2)

R(d) =
1

nX

∑
p∈X

[
min
p̂∈X̂

||p− p̂|| < d

]
(3)

and we use d = 0.01 following prior work.

C. Additional Qualitative Examples
We provide additional qualitative examples of our method

in Figs. 1, 2 and 4 to 6. Figures 1 to 3 show examples of
reconstructions on additional categories of Co3D, includ-
ing hydrants, teddybears, glasses, remotes, motorcycles,
hairdryers, plants, and donuts. Fig. 4 contains a selection
of the best reconstructions produced by our model for each
category of ShapeNet, as ranked by F-score. Fig. 6 con-
tains random examples of reconstructions produced by our
model on ShapeNet. Finally, Fig. 5 shows a selection of the
worst examples produced by our model for each category on
ShapeNet, as ranked by F-score.

D. Additional Ablations
We include additional ablations omitted from the main

paper due to space constraints. These ablations were per-
formed on a subset of ShapeNet dataset consisting of only
the sofa category.
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Mask Distance Function. We removed the 2D mask dis-
tance function described in Appendix A. This change had a
small effect, reducing the F -score by 0.019 points, a relative
decrease of 9%. Qualitatively, the generated point clouds
were similar to those produced using the mask distance func-
tion.
Projection Method. We replaced the rasterization-based
projection described in Section 3.4 with a naive projection
that projects all points (including occluded points) onto the
image. This change was detrimental, reducing the F -score
by 0.081 points, a relative decrease of 40%. Qualitatively,
these point clouds were significantly worse than those with
the rasterization-based projection. These results suggest that
the rasterization-based projection is a key component of the
method.

E. Analysis of Failure Cases
Failure cases of our model are shown in Fig. 5. Note that

these are from the ShapeNet-R2N2 dataset, which combines
13 ShapeNet classes but does not permit the use of category
labels. In other words, the model is image-conditional, but
not class-conditional.

Examining these failure cases, we observe that our model
sometimes performs poorly on images with ambiguous cate-
gories. For example, in the 8th column of the 2nd row of the
figure, it appears that the model generates a chair rather than
a box. Similarly, in the 12th row of the 5th row of the figure,
the object seems to have generated a box rather than a couch.
These errors are most likely due to the fact that these cate-
gories all have instances which resemble rectangular prisms
from certain views.

It is also notable that on many of the challenging examples
on which our model struggles (e.g., the examples for the
watercraft category located in the last row of the figure),
other models also struggle to a similar degree.



Figure 1. Additional qualitative examples. Examples from the hydrants category of Co3D. The first column in each row shows the input
image. The second and third columns show intermediate steps in the diffusion process. The fourth column shows the final reconstructed
point cloud with color. The remaining five rows show the final predicted point cloud from novel views.



Figure 2. Additional qualitative examples. Examples from the teddy bear category of Co3D. The first column in each row shows the input
image. The second and third columns show intermediate steps in the diffusion process. The fourth column shows the final reconstructed
point cloud with color. The remaining five rows show the final predicted point cloud from novel views.
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Figure 3. Additional qualitative examples. Examples from six additional categories: glasses, remotes, motorcycles, hairdryers, plants, and
donuts.



Figure 4. Successful examples produced by our method along with prior work. The leftmost image in each set of images is the input image.
Note that there are no images in the last row of the right half of the figure because we show examples for all 13 ShapeNet-R2N2 classes
(seven on the left and six on the right).



Figure 5. Failure cases of our method along with prior work. The leftmost image in each set of images is the input image. Note that there
are no images in the last row of the right half of the figure because we show examples for all 13 ShapeNet-R2N2 classes (seven on the left
and six on the right).



Figure 6. Random examples of our method along with prior work. The leftmost image in each set of images is the input image. Note that
there are no images in the last row of the right half of the figure because we show examples for all 13 ShapeNet-R2N2 classes (seven on the
left and six on the right).
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