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A. Implementation Details
In this section, we provide full implementation details

which were omitted from the main text due to space con-
straints. Most of these details follow [9], but a few are
slightly modified.
Emission-absorption. Let I ∈ R3×H×W be an image, so
that I(u) ∈ R3 is the color of pixel u. In order to compute
I(u), one casts a ray ru from the camera center through
the pixel, interpreted as a point on the 3D image plane (this
implicitly accounts for the camera viewpoint π ∈ SE(3)).
Then, one takes a certain number of samples (xi ∈ ru)i∈N ,
for indices N = {1, . . . , N} taken with constant spacing
∆. The color is obtained as:

I(u) = Ru(σ, c, π) =
∑
i∈N

(Ti+1 − Ti)c(xi), (1)

where Ti = exp(−∆
∑i−1

j=0 σ(xj)) is the probability that
a photon is transmitted from point xi back to the camera
sensor without being absorbed by the material.
Shading. We consider three different types of shading:
albedo, diffuse, and textureless. For albedo, we simply ren-
der the RGB color of each ray as given by our model:

I(u) = Iρ(u) = Ru(σ, c, π)

For diffuse, we also compute the surface normal n as the
normalized negative gradient of the density with respect to
u. Then, given a point light l with color lρ and an ambient
light with color la, we render

I(u) = Iρ(u) ◦ (lρ ◦max(0, n · l−u
||l−u|| + la))

For textureless, we use the same equation with Iρ(u) re-
placed by white (1, 1, 1).

For the reconstruction view, we only use albedo shad-
ing. For the random view (i.e. the view used for the prior
objectives), we use albedo shading for the first 1000 steps
of training by setting la = 1.0 and lρ = 0.0. Afterwards
we use la = 0.1 and lρ = 0.9, and we select stochastically
between albedo, diffuse, and textureless with probabilities
0.2, 0.4, and 0.4, respectively.

We obtain the surface normal using finite differences:

n =
1

2 · ϵ

I(u+ ϵx)− I(u− ϵx)
I(u+ ϵy)− I(u− ϵy)
I(u+ ϵz)− I(u− ϵz)


where ϵx = (ϵ, 0, 0), ϵy = (0, ϵ, 0), and ϵz = (0, 0, ϵ)

Density bias. As in [9], we add a small Gaussian blob of
density to the origin of the scene in order to assist with the
early stages of optimization. This density takes the form

σinit(µ) = λ · e−||µ||2/(2ν2)

with λ = 5 and ν = 0.2.
Camera. The fixed camera for reconstruction is placed at
a distance of 1.8 from the origin, oriented toward the ori-
gin, at an elevation of 15◦ above the horizontal plane. For
a small number of scenes in which the object of interest
is clearly seen from overhead, the reconstruction camera is
placed at an elevation of 40◦.

The camera for the prior objectives is sampled randomly
at each iteration. Its distance from the origin is sampled
uniformly from [1.0, 1.5]. Its azimuthal angle is sampled
uniformly at random from the 360◦ around the object. Its el-
evation is sampled uniformly in degree space from −10◦ to
90◦ with probability 0.5 and uniformly on the upper hemi-
sphere with probability 0.5. The field of view is uniformly
sampled between 40 and 70. The camera is oriented toward
the origin. Additionally, every tenth iteration, we place the
prior camera near the reconstruction camera: its location
is sampled from the prior camera’s location perturbed by
Gaussian noise with mean 0 and variance 1.
Lighting. We sample the position of the point light by
adding a noise vector η ∼ N (0, 1) to the position of the
prior camera.
View-Dependent Prompt. We add a view-dependent suf-
fix to our text prompt based on the location of the prior cam-
era relative to the reconstruction camera. If the prior camera
is placed at an elevation of above 60◦, the text prompt re-
ceives the suffix “overhead view.” If it is at an elevation
below 0◦, the text receives “bottom view.” Otherwise, for
azimuthal angles of ±30◦, ±30 − 90◦, or ±90 − 180◦ in

1



either direction of the reconstruction camera, it receives the
suffices “front view,” “side view,” or “bottom view,” respec-
tively.

InstantNGP. Our InstantNGP [8] parameterizes the den-
sity and albedo inside a bounding box around the origin
with side length 0.75. It is a multi-resolution feature grid
with 16 levels, each with a feature dimension of 2. The
maximum resolution is 2048. With coarse-to-fine training,
only the first 8 (lowest-resolution) levels are used during the
first half of training, while the others are masked with zeros.
Each feature grid has dimensionality 2. The features from
these grids are stacked and fed to a 3-layer MLP with 64
hidden units.

Rendering and diffusion prior. We render at resolution
96px. Since Stable Diffusion [11] is designed for images
with resolution 512px, we upsample renders to 512px be-
fore passing them to the Stable Diffusion latent space en-
coder (i.e. the VAE). We add noise in latent space, sam-
pling t ∼ U(0.02, 0.98). We use classifier-free guidance
strength 100. We found that results with classifier-free guid-
ance strength above 30 produced good results; below 30 led
to many more geometric deformities. Although we do not
backpropagate through the Stable Diffusion UNet for LSDS,
we do backpropagate through the latent space encoder.

Optimization. We optimize using the Adam [6] optimizer
with learning rate 1e− 3 for 5000 iterations. The optimiza-
tion process takes approximately 45 minutes on a single
V100 GPU.

Background model. For our background model, we use
a two-layer MLP which takes the viewing direction as in-
put. This model is purposefully weak, such that the model
cannot trivially optimize its objectives by using the back-
ground.

Additional regularizers. We additionally employ two
regularizers on our density field. The first is the orientation
loss from Ref-NeRF [12], also used in DreamFusion [9], for
which we use λorient = 0.01. The second is an entropy loss
which encourages points to be either fully transparent or
fully opaque: Lentropy = (w · log2(w)−(1−w) · log2(1−w)
where w is the cumulative sum of density weights computed
as part of the NeRF rendering equation (Equation 1).

Single-image textual inversion. Our single-image tex-
tual inversion step, which is a variant of textual inver-
sion [4], entails optimizing a token e introduced into the
diffusion model text encode to match an input image. The
key to making this optimization successful given only a sin-
gle image is the use of heavy image augmentations, shown
in Fig. 1. We optimize using these augmentations for a to-
tal of 3000 steps using the Adam optimizer [6] with image
size 512px, batch size 16, learning rate 5 · 10−4, and weight
decay 1 · 10−2.

The embedding e can be initialized either randomly,

manually (by selecting a token from the vocabulary that
matches the object), or using an automated method.

One automated method that we found to be successful
was to use CLIP (which is also the text encoder of the Sta-
ble Diffusion model) to infer a starting token to initialize
the inversion procedure. For this automated procedure, we
begin by considering the set of all tokens in the CLIP text
tokenizer which are nouns, according to the WordNet [3]
database. We use only nouns because we aim to reconstruct
objects, not reproduce styles or visual properties. We then
compute text embeddings for captions of the form “An im-
age of a ⟨token⟩” using each of these tokens. Separately,
we compute the image embedding for the input image. Fi-
nally, we take the token whose caption is most similar to the
image embedding as initialization for our textual inversion
procedure.

We use the manual initialization method for the exam-
ples in the main paper and we use the automated initializa-
tion method for the examples in the supplemental material
(i.e. those included below).

B. Additional Qualitative Examples

In Fig. 2, we show additional examples of reconstruc-
tions from our model. We see that our method is often able
to reconstruct plausible geometries and object backsides.

C. Additional Comparisons

We provide additional comparisons to recent single-view
reconstruction methods on the lego scene from the synthetic
NeRF [7] dataset. We compare on the special test set cre-
ated by SinNeRF [13], which consists of 60 views very
close to the reference view. We emphasize that our method
is not tailored to this setting, whereas the other methods are
designed specifically for it. For example, some other meth-
ods work by warping the input image, which only performs
well for novel views close to the reference view.

Method Depth PSNR SSIM LPIPS

PixelNeRF [14] 14.3 0.72 0.22
DietNeRF [5] 15.0 0.72 0.20
DS-NeRF [2] ✓ 16.6 0.77 0.16
SinNeRF [13] ✓ 21.0 0.82 0.09
RealFusion 16.5 0.76 0.25

Table 1. Novel view synthesis comparison. A comparison of
RealFusion against recent single-view reconstruction methods on
the task of novel view synthesis on the synthetic lego scene from
NeRF [7]. These numbers are computed on the test set rendered by
SinNeRF [13], which contains 60 views very close to the reference
view. This is a setting highly favorable to methods that use depth
supervision, such as DS-NeRF and SinNeRF .



t r a n s f o r m = T . Compose ( [
T . RandomApply ( [ T . RandomRotat ion ( d e g r e e s =10 , f i l l = 2 5 5 ) ] , p = 0 . 7 5 ) ,
T . RandomResizedCrop ( i m a g e s i z e , s c a l e = ( 0 . 7 0 , 1 . 3 ) ) ,
T . RandomApply ( [ T . C o l o r J i t t e r ( 0 . 0 4 , 0 . 0 4 , 0 . 0 4 , 0 . 0 4 ) ] , p = 0 . 7 5 ) ,
T . RandomGrayscale ( p = 0 . 1 0 ) ,
T . RandomApply ( [ T . G a u s s i a n B l u r ( 5 , ( 0 . 1 , 2 ) ) ] , p = 0 . 1 0 ) ,
T . R a n d o m H o r i z o n t a l F l i p ( ) ,

] )

Figure 1. PyTorch code for the image augmentations used for single-image textual inversion.

D. Text-to-Image-to-3D
In this section, we explore the idea of reconstructing a

3D object from a text prompt alone by first using the text
prompt to generate an image, and then reconstructing this
image using RealFusion.

We show examples of text-to-image-to-3D generation in
Fig. 3.

Compared to the one-step procedure of [9] (i.e. text-to-
3D), this two-step procedure (i.e. text-to-image-to-3D) has
the advantage that it may be easier for users to control. Un-
der our setup, users can first sample a large number of im-
ages from a 2D diffusion model such as Stable Diffusion,
select their desired image, and then lift it to 3D using Real-
Fusion. It is possible that this setup could help help address
the issue of diversity of generation discussed in [9]. Addi-
tionally, tn this setting, we find that it is usually not neces-
sary to use single-image textual inversion, since the images
sampled in the first stage are already extremely well-aligned
with their respective prompts.

E. Analysis of Failure Cases
In Fig. 4, we show additional examples of failure cases

from our model. Below, we analyzed what we find to be our
three most common failure cases. The techniques we ap-
ply in RealFusion (single-image textual inversion, normals
smoothing, and coarse-to-fine training) make these failure
cases less frequent and less severe, but they still occur on
various images.
Neural fields lacking well-defined geometry. One fail-
ure case of our method consists of the generation of a semi-
transparent neural field which does not have a well-defined
geometry. These fields tend to look like the input image
when seen from the reference viewpoint, but do not resem-
ble plausible objects when seen from other viewpoints. We
note that this behavior is extremely common when using
CLIP as a prior model, but it occurs occasionally even when
using Stable Diffusion and LSDS.
Floaters. Another failure case involves “floaters,” or dis-
connected parts of the scene which appear close to the cam-
era. These floaters sometimes appear in front of the refer-

ence view as to make the corresponding render look like the
input image. Without image-specific prompts, these floaters
are a very big issue, appearing in the majority of recon-
structions. When using image-specific prompts, the issue
of floaters is greatly (but not entirely) alleviated.

The Janus Problem. Named after the two-faced Roman
god Janus, the “Janus problem” refers to reconstructions
which have two or more faces. This problem arises because
the loss function tries to make the render of every view look
like the input image, at least to a certain extent.

Our use of view-specific prompting partially alleviates
this issue. For example, when we render an image of a
panda from the back, we optimize using the text prompt
“An image of a ⟨object⟩, back view”, where “⟨object⟩” is
our image-specific token corresponding to the image of a
panda. However, even with view-specific prompting, this
problem still occurs. This problem is visible with the panda
in Fig. 3 (row 2). We note that this problem is not unique to
our method; it can also be seen with [9] (see Figure 9, last
row).

F. Unsuccessful Experiments and Regulariza-
tion Losses

In the process of developing our method, we exper-
imented with numerous ideas, losses, and regularization
terms which were not included in our final method because
they either did not improve reconstruction quality or did not
improve it enough to justify their complexity. Here, we
describe some of these ideas for the benefit of future re-
searchers working on this problem.

Using DM for reconstruction loss. One idea we tried in-
volved using the diffusion model within our reconstruction
objective as well as our prior objective. This involved a
modified version of LSDS in which we compared the noise
predicted by the diffusion model for our noisy rendered im-
age to the noise predicted by the diffusion model for a noisy
version of our input image. We found that with this loss we
were able to reconstruct the input image to a certain degree,
but that we did not match the exact input image colors or
textures.



Normals smoothing in 3D. Our normals smoothing term
operates in 2D, using normals rendered via the NeRF equa-
tion. We also tried different ways of smoothing normals in
3D. However, possibly due to our grid-based radiance field
and/or our finite difference-based normals computation, we
found that these regularization terms were all very noisy and
harmful to reconstruction quality.
Using monocular depth. We tried incorporating monoc-
ular depth predictions into the pipeline, using pre-trained
monocular depth networks such as MiDaS [10]. Specifi-
cally, we enforced that the depth rendered from the refer-
ence view matched the depth predicted by MiDaS for the in-
put image. We found that this additional depth loss in most
instances did not noticeably improve reconstruction quality
and in some cases was harmful. Nonetheless, these results
are not conclusive and future work could pursue other ways
of integrating these components.
Using LPIPS and SSIM reconstruction losses. We tried
using LPIPS [15] and SSIM losses in place of our L2 recon-
struction loss. We found that LPIPS performed similarly to
L2, but incurred additional computation and memory usage.
We found that SSIM without either L2 and LPIPS resulted
in worse reconstruction quality, but that it yielded fine re-
sults when combined with them. We did not include it in
our final objective for the sake of simplicity.
Rendering at higher resolutions. Since Stable Diffusion
operates on images of resolution 512px, it is conceivable
that rendering at higher resolution would be benefitial with
regard to the prior loss. However, we found no noticeable
difference in quality when rendering at higher resolutions
than 96px or 128px. For computational purposes, we used
resolution 96px for all experiments in the main paper.
Using DINO-based prior losses. Similarly to the CLIP
prior loss, one could imagine using other networks to en-
courage renders from novel views to be semantically sim-
ilar to the input image. Due to the widespread success of
the DINO [1] models in unsupervised learning, we tried
using DINO feature losses in addition to the Stable Diffu-
sion prior loss. Specifically, for each image rendered from
a novel view, we computed a DINO image embedding and
maximized its cosine similarity with the DINO image em-
bedding of the reference image. We found that this did not
noticeably improve or degrade performance. For purposes
of simplicity, we did not include it.

G. Links to Images for Qualitative Results
For our qualitative results, we primarily use images from

datasets such as Co3D. We also use a small number of im-
ages sourced directly from the web to show that our method
works on uncurated web data. We provide links to all of
these images on our project website.

https://lukemelas.github.io/realfusion/links


Figure 2. Additional qualitative examples. This figure presents additional qualitative examples from our model. The first column shows
the input image. The second column shows the reconstruction from the reference viewpoint. The following columns show renders from
novel viewpoints, demonstrating that our model is able to reconstruct plausible object shapes.



Figure 3. Text-to-Image-to-3D. This figure presents examples from our model using images generated directly from text prompts using
Stable Diffusion [11]. The images were generated with the prompt “An image of a ” where the blank space is replaced by “deer”,
“flamingo”, “hen”, “pencil drawing of a horse”, “squirrel”, “dolphin”, and “unicorn”, respectively. The results demonstrate that our
method is able to reconstruct plausible object shapes even from synthetic images.



Figure 4. Additional failure cases. This figure presents additional failure cases from our model. The first column shows the input image.
The second column shows the reconstruction from the reference viewpoint. The following columns show renders from novel viewpoints,
which make clear why these examples are failure cases. Note that some examples (for example, the panda bear in the second row and the
hamster in the last row) suffer from the Janus problem.



Figure 5. A visualization of the effect of single-image textual inversion on reconstruction quality. An expanded version of Figure
7 in the main paper showing the effect of single-image textual inversion on reconstruction quality. The top row in each pair of rows
shows reconstruction results using a standard text prompt, whereas the bottom row shows reconstruction results using single-image textual
inversion. The novel views are chosen to show the back side of the object; note how the examples without textual inversion look like
highly-generic versions of the objects in the input image.



Figure 6. An example of variation across random seeds for a challenging input image. As described in the main paper, our model is
able to generate multiple reconstructions for a given input image. For this figure, we apply our method (in a text-to-image-to-3D manner)
to a highly challenging image produced by Stable Diffusion from the text prompt “An image of an astronaut riding a horse.” We run
reconstruction using two different seeds: one of these (top) yields a reasonable shape, whereas the other is a failure case that does not yield
a reasonable shape. This example both highlights the ability of our method to reconstruct highly challenging shapes and also demonstrates
how future work could aim to improve reconstruction consistency and quality.
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