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A. Dataset

Dataset fwd left right Collisions Rollouts Total

training (VOT 143697 53140 53163 28255 4891 250000
training [12] 150000 49870 50130 27908 9782 250000

validation (VOT) 13990 5542 5468 2809 599 25000
validation [12] 15000 4999 5001 2770 1184 25000

Table A.1. Sample statistics of the training and validation sets for
our experiments and ConvNet-baselines (separate [12]).

We collect separate datasets for training joint models
(VOT, unified -based cf . Table 2 2) and separate models
(separate -based cf . Table 2 1) [12]. We keep collision data
as we find the model to struggle with estimating those. A
future direction could be to increase the amount of collision
data to deal with this issue.

B. Training Loss
To train VOT and the unified ConvNet-approach (cf . Ta-

ble 2 2), we use the L2-norm between the ground truth VO
parameters ξ, β, and their estimated counterparts ξ̂, β̂:

Lnorm = ∥ξ − ξ̂∥22 + ∥β − β̂∥22 (1)

We further add the geometric (rotation rot and transla-
tion trans) invariance losses proposed by Zhao et al. [12]

Lrot
inv = ∥β̂Ct→Ct+1

+ β̂Ct+1→Ct
∥22

Ltrans
inv = ∥ξ̂Ct→Ct+1

+ R̂ ∗ ξ̂Ct+1→Ct
∥22

(2)

with subscript Ct → Ct+1 denoting the estimated parame-
ters from transforming the agent’s coordinate system from
Ct to Ct+1 and Ct+1 → Ct vice versa.

The final loss can then be written as

L = Lnorm + λ1Ltrans
inv + λ2Lrot

inv (3)

with hyperparameters λ1, λ2 to balance the different com-
ponents. We found λ1 = 1., λ2 = 1. to work well.

*Work done on exchange at EPFL

C. Baselines

We use [12] as our baseline and adapt the publicly avail-
able implementation [11]. To match model capacity as sug-
gested by [6], we replace the ResNet-18 backbones with
ResNet-50. Note that we explicitly decide against compar-
ing to [6] as their work aims to scale up the dataset size
significantly which is the exact opposite of our goal.

We train separate (one model for all actions) and unified
(one model for each action) models. However, we find that
using the proposed geometric invariance losses for training
the unified model yields improved results. Training the sep-
arate models closely follows [12] in terms of loss selection
and training procedure, i.e., we train the fwd model with a
batch size of 256 for 150 epochs using 150 k samples, and
the left and right models with a batch size of 256 for 75
epochs separately until jointly fine-tuning them for 75 addi-
tional epochs with a batch size of 224 using 100 k samples.
We use a dropout of 0.2, warm-up training with 10 steps
included in the epochs, and do not fine-tune the navigation
policy. Table A.1 describes the dataset statistics.

Because the authors published their code and pre-trained
weights [11] and we closely follow their setup, we can com-
pare how their approach compares to ours. We, therefore,
also use the same navigation policy for all evaluations.

We, further experimented with using ResNet-50 weights
pre-trained on ImageNet [4] classification as initialization
for the baseline. Pre-training shows to be beneficial for ini-
tializing separate models as it allows them to learn faster
from a smaller amount of data. However, initializing a uni-
fied model with those actually hurts performance.

Finally, we compare to Point-to-point Iterative Closest
Point (ICP) [2] implemented in Open3D [13]. The method
matches two point clouds at timestep t and t + 1 and esti-
mates the corresponding transformation Ĥ . We initialize Ĥ
with the mean transformation of each action and convert the
Depth maps to point clouds. While the method is reliable
for fwd, turning left,right (±30°) causes too much devi-
ation in consecutive point clouds, leading to drift and poor
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Method Observations Samples S ↑ SPL↑ SSPL↑ dg ↓
oracle GPS+Compass 250 k 97 74 73 29

VOT-B (MultiMAE) RGB 250 k 59 45 66 66
VOT-B (MultiMAE) Depth 250 k 93 71 72 38
VOT-B (MultiMAE) RGB-D 250 k 88 67 71 42

ResNet-50, unified [12] RGB 250 k 45 34 63 95
ResNet-50, unified [12] Depth 250 k 59 45 65 81
ResNet-50, unified [12] RGB-D 250 k 64 48 65 85

ResNet-50, separate [12] RGB-D 250 k 22 13 31 305

ResNet-50, unified [12], pre-train RGB 250 k 33 25 59 136
ResNet-50, unified [12], pre-train Depth 250 k 54 41 64 93
ResNet-50, unified [12], pre-train RGB-D 250 k 53 40 64 95

ResNet-50, separate [12], pre-train RGB-D 250 k 47 36 62 103

DeepVO [9]† RGB-D 1000 k 50 39 65 83
ResNet-18, separate [12]† RGB-D 1000 k 81 62 70 51
ResNet-18, unified [12] † RGB-D 1000 k 72 53 65 83
ICP Depth – 2.2 1.4 18.5 419.6

Table C.1. Comparison of baselines (w/ and w/o supervised pre-training on ImageNet [4])and VOT (cf . Table 2 13). Success S, SPL,
SSPL, and dg reported as e−2.
† results from [12]

noise multiplier ×1 (default) noise multiplier ×2 noise multiplier ×5

Figure C.1. Qualitative result for increasing the noise multiplier of the Redwood Noise Model [3, 7].

Method Obs. S ↑ SPL↑ SSPL↑ dg ↓
VOT-B noise ×1 Depth 92.3 70.8 71.8 42.5
VOT-B noise ×2 Depth 92.4 70.5 71.5 37.4
VOT-B noise ×5 Depth 86.3 65.1 68.1 51.5

Table D.1. Sensitivity of pre-trained VOT-B with [ACT ] to
Depth observations with noise levels ×1 (default), ×2,×5. Met-
rics reported as e−2.

performance.

D. Extended Ablation Study
D.1. Sensitivity To Noisy Depth

As shown in Tab. C.1, the Visual Odometry Transformer
(VOT) relies on the more valuable information of Depth

due to its more valuable information in contrast to RGB in
the Visual Odometry (VO) task. While real-world sensors
do not provide perfect Depth observations, we evaluate the
VOT’s sensitivity to different levels of noise in Tab. D.1.
The PointNav(-v2) Habitat Challenge 2021 already uses the
realistic Redwood Noise Model [3, 7]. However, we show
VOT’s robustness to noisy Depth even if the model’s noise
multiplier is increased from ×1 (default) to ×2 and ×5 (cf .
Fig. C.1).

D.2. Changing Sensor Suites During Test-time

We showcase our model’s ability to deal with changing
sensor suites by uniformly dropping modalities at test-time
with probability p in Tab. D.2, effectively interpolating be-
tween an available and missing sensor, i.e., modality. VOT-
B trained to be modality-invariant (w/ inv.) does not suffer



Method Drop p S ↑ SPL↑ SSPL↑ dg ↓
VOT-B w/ & w/o inv. RGB 0.00 92.6 / 88.2 70.6 / 67.9 71.3 / 71.3 40.7 / 42.1
VOT-B w/ & w/o inv. RGB 0.25 92.2 / 84.9 70.4 / 65.2 71.8 / 70.8 40.7 / 44.8
VOT-B w/ & w/o inv. RGB 0.50 92.0 / 83.8 70.4 / 65.0 71.8 / 71.4 37.7 / 47.6
VOT-B w/ & w/o inv. RGB 0.75 92.3 / 82.0 70.5 / 63.4 71.5 / 70.9 43.8 / 50.4
VOT-B w/ & w/o inv. RGB 1.00 91.0 / 75.9 69.4 / 58.5 71.2 / 69.9 37.0 / 59.5

VOT-B w/ & w/o inv. Depth 0.00 92.6 / 88.2 70.67 / 67.9 71.3 / 71.3 40.7 / 42.1
VOT-B w/ & w/o inv. Depth 0.25 81.1 / 63.3 61.9 / 48.8 69.4 / 67.8 54.9 / 69.3
VOT-B w/ & w/o inv. Depth 0.50 75.1 / 47.2 57.8 / 36.5 69.2 / 65.0 58.0 / 98.5
VOT-B w/ & w/o inv. Depth 0.75 66.8 / 34.1 51.2 / 25.6 68.1 / 60.5 61.4 / 122.6
VOT-B w/ & w/o inv. Depth 1.00 60.9 / 26.1 47.2 / 20.0 67.7 / 58.7 72.1 / 148.1

Table D.2. Evaluation of changing sensors at test-time. Models cf . Tab. 2 - 13 & 14. Metrics reported as e−2.

Resolution S ↑ SPL↑ SSPL↑ dg ↓
160× 80 88.2 67.9 71.3 42.1
224× 112 75.0 57.1 67.6 62.0

Table D.3. Results for training VOT (cf . Table 2, 16) on different
input observation resolutions (width × height). A lower resolution
(160×80) trains faster while performing better than the resolution
the MultiMAE was pre-trained on (224×112). Losses L, Success
S, SPL, SSPL, and dg reported as e−2.

from catastrophic failure in contrast to training without it.

D.3. Input Resolution

We note that the MultiMAE is trained on an input res-
olution of 224 × 224 per modality, i.e., 196 tokens with a
patch size of 16 × 16. Since the Transformer’s computa-
tion scales quadratically with the input sequence length [8],
a higher resolution, therefore, means higher computational
expenses. With multiple modality inputs at the same time,
this becomes especially problematic. Bachmann et al. [1]
remedy this issue by encoding only a subset of all input to-
kens, similar to MAE [5].

This might be a promising direction for reducing the
computational requirements for training VOT but there is no
clear strategy yet on which tokens to select. When actions
are discrete, one could first train a VOT and use the attention
maps to identify important regions. This bias could then be
injected back into training another VOT but now with mask-
ing out, i.e., removing tokens from the input that were not
attended to by the first model. While this approach would
clearly not be generally applicable, we decided to reduce
the computation by reducing the resolution of the input ob-
servations. As our experiments show, the model is indeed
able to adapt to the change in resolution by fine-tuning on
the downstream VO task.

We evaluate the quantitative difference of input reso-

Method Drop S ↑ SPL↑ SSPL↑ dg ↓
Batch drop
VOT w/ inv. – 92.6 70.67 71.3 40.7
VOT w/ inv. RGB 91.0 69.4 71.2 37.0
VOT w/ inv. Depth 60.9 47.2 67.7 72.1

Sample drop
VOT w/ inv. – 72.1 54.0 66.4 62.1
VOT w/ inv. RGB 80.7 61.6 68.8 54.0
VOT w/ inv. Depth 61.3 47.2 67.4 71.3

Table D.4. Results for dropping modalities on a batch vs. sample
level during training. Losses L, Success S, SPL, SSPL, and dg
reported as e−2.

lutions by comparing our proposed observation resolution
(width × height) of 80 × 160 (stacked: 160 × 160) to
112 × 224 (stacked 224 × 224), matching the training res-
olution of MultiMAE. We train the latter with a batch size
of 48 on 2 NVIDIA V100-SXM4-40GB GPUs due to the
larger number of input tokens. Both models were trained
for 50 epochs. Table D.3 shows that using the original, i.e.,
higher resolution turns out to be harmful to the VO task.

D.4. Sample- vs. Batch-wise Invariance Training

We investigate how dropping modalities on a batch (i.e.
all samples in the batch drop the same modality) vs. sample
(i.e. multi-modal masking) level affects performance. In-
tuitively, sample-based dropping should lead to more sta-
ble training as the model gets updated on all modalities
and does not drift toward overfitting a single one which
would be the case on a batch level. We compare a modality-
invariant VOT (w/ inv.) (cf . Table 2 17) to the sample-based
invariance training in Table D.4 and find that sample-based
dropping performs worse than the batch-wise approach.



E. Additional Visualizations
Figure E.1: Displacement and rotation error of VOT

(cf . Table 2 17). We aggregate estimation errors for every
action over 150 trajectories and plot them against the mag-
nitude of the ground truth displacement ξ and rotation β.

Figure E.2 Navigation paths show the ”imaginary” path
and the VO estimate of navigation agent using VOT (cf .
Table 2 16,17).

Figure E.3 Attention maps of an estimate w.r.t. different
action embeddings. We find that the action type, i.e., turn-
ing or moving, has a high impact on the resulting attention
maps. In contrast, the turning direction has a low impact on
the attended regions. We hypothesize that in most cases the
displacement is large enough such that it can be inferred by
the model. However, knowing that the agent rotates helps
to deal with ambiguous cases, e.g., a noisy fwd action col-
liding with a wall might be difficult to distinguish from a
noisy left turning less than 30° [12].

Figure E.3 Overlayed attention maps show that VOT
ignores artifacts and focuses on distinct visual features in
the observations.
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Figure E.1. Displacement and rotation error analysis of VOT (cf . Table 2 17).
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Figure E.2. Top-down map of the agent navigating the Cantwell scene [10] from start ( ) to goal ( ). The plot shows the shortest path ( ),
the path taken by the agent ( ), and the ”imaginary” path the agent took, i.e., its VO estimate ( ). We evaluate the model without RGB or
Depth (Drop) to determine performance when modalities are missing.
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(a) Ground truth action: left
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(b) Ground truth action: fwd

Figure E.3. Attention maps of the last attention layer of VOT (cf . Table 2 13). Brighter color indicates higher ( ) and darker color lower
( ) weighting of the image patch. Impact of different [ACT ] tokens on the attention. From top to bottom: observation, [ACT ] for fwd,
left, right.
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(a) Action: fwd
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(b) Ground truth action: left

ot (RGB) ot+1 (RGB) ot (Depth) ot+1 (Depth)

(c) Ground truth action: right

Figure E.4. Attention maps of the last MHA-layer of VOT-B. From top to bottom: observation, attention map, both overlayed.
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