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1. Overview
In the main paper, we introduce a novel neural rendering

framework, NeAT, that can learn implicit surfaces with arbi-
trary topologies from multi-view images. This supplemental
material consists of:

• Section 2 provides the derivation of the continuous
opacity density ρ (Section 2.1), the derivation of the
discrete opacity density α (Section 2.2), and the proofs
of the unbiasness and occlusion-awareness of our pro-
posed volume weight function (Section 2.3).

• Section 3 provides implementation details of NeAT-Net.

• Section 4 provides additional qualitative results of
multi-view reconstruction.

2. Derivation of Opacity Density
In this section, we first derive the continuous opacity

density ρ with probability density defined as ϕs(f(p) ·γ(p))
for the SDF representation. Then, we discretize ρ to derive
the discrete opacity density α with the SDF representation.
Finally, we prove the unbiasness and occlusion-awareness
of the weight function for arbitrary surfaces wβ .

2.1. Derivation of the Continuous Opacity Density

Given a sampled pixel o on an input image, we project
it to the 3D space and get the sampled 3D points emitting
from the pixel {p(t) = o+ tv|t ≥ 0}, where v is the unit
direction vector of the ray. The rendered pixel color is

Ipred(o,v) =

∫ +∞

0

exp(−
∫ t

0

ρ(u)du) · ρ(t)c(t)dt. (1)

To derive the opaque density ρ(t), we firstly consider a
simple case where there is only one plane in the sampling
space. Then we generalize ρ(t) to the general case of multi-
ple surface intersections.

Ray Intersects with One Surface In the simple case of a
single plane, the signed distance function could be written as

f(p(t)) = cos(θ)(t− t∗), (2)

where f(p(t∗)) = 0, and θ is the angle between ray v
and the surface normal n. Because the surface is assumed
locally, cos(θ) is a constant value. Similarly, as there is one
single plane with a constant face orientation, Sign(v · n) is
a constant value as well. We denote this constant value as γ.

By plugging Equation 2 into Equation 4 in the main paper,
we have

w(t) =
ϕs(f(p(t)) · γ)∫ +∞

−∞ ϕs(f(p(u)) · γ)du

=
ϕs(γf(p(t)))∫ +∞

−∞ ϕs(cos(θ)(u− t∗)) · γ)du

=
ϕs(γf(p(t))))

(cos(θ) · γ)−1
∫ +∞
−∞ ϕs((u− t∗))du

=
ϕs(γf(p(t))))

(cos(θ) · γ)−1 · 1
= ϕs(γf(p(t))) · γ · cos(θ)

= ϕs(γf(p(t))) · γ · d

dt
(f(p(t)))

=
d

dt
[Φs(γf(p(t)))]

(3)

By denoting T (t) = exp(−
∫ t

0
ρ(u))du, we can rewrite

Equation 5 in the main paper as:

w(t) = T (t)ρ(t) =
dT

dt
(t) (4)

Plug Equation 4 into Equation 3, we have

dT

dt
(t) =

d

dt
Φs(γf(p(t))) (5)

Integrating both sides, we have

T (t) = Φs(γf(p(t))) (6)

1



Taking the logarithm and then differentiating both sides,
we have ∫ t

∞
ρ(u)du = −ln(Φs(f(p(t)) · γ)) (7)

⇒ ρ(t) =
−dΦs

dt (f(p(t)) · γ)
Φs(f(p(t)) · γ)

(8)

We can generalize the opaque density to the general case
where there are multiple surface intersections.

Ray Intersects with Multiple Surfaces We denote
Sign(v · n) as γ(p(t)). Following the occlusion-aware
weight function (Equation 5 in the main paper), we have

w(t) = exp(−
∫ t

0

ρ(u)du)ρ(t)

= exp(−
∫ tl

0

ρ(u)du) exp(−
∫ t

tl

ρ(u)du)ρ(t)

=T (tl) exp(−
∫ t

tl

ρ(u)du)ρ(t)

=T (tl) exp(−(−ln(Φs(f(p(t))γ(p(t))))

+ ln(Φs(f(p(tl))γ(p(t))))))ρ(t)

=T (tl)
Φs(f(p(t))γ(p(t)))

Φs(f(p(tl))γ(p(tl)))

− d
dtΦs(f(p(t))γ(p(t)))

Φs(f(p(t))γ(p(t)))

=T (tl)
ϕs(f(p(t))γ(p(t)))γ(p(t))

d
dtf(p(t))

Φs(f(p(tl))γ(p(tl)))

=
T (tl)γ(p(t))

d
dtf(p(t))

Φs(f(p(tl))γ(p(tl)))
ϕs(f(p(t))γ(p(t)))

(9)
Suppose that the local surface is tangentially approxi-

mated by a sufficiently small planar patch with its outward
unit normal vector denoted as n. Then we can write the
signed distance function f(p(t)) as

f(p(t)) =
d

dt
f(p(t)) · v · t+O(t2)

=n · v · t+O(t2)
(10)

Then the first-order approximation of w(t) can be written
as

w(t) =
T (tl)γ(p(t))n · v

Φs(f(p(tl))γ(p(tl)))
ϕs(f(p(t))γ(p(t))) (11)

Here T (tl)γ(p(t))n·v
Φs(f(p(tl))γ(p(tl)))

can be considered as a constant.
Hence, w(t) attains a local maximum when f(p(t)) = 0
because ϕs(x) is a unimodel density function attaining the
maximum value at x = 0.

Therefore, we can construct a first-order unbiased and
occlusion-aware opacity density

ρ(t) =
−dΦs

dt (f(p(t)) · γ(p(t)))
Φs(f(p(t))) · γ(p(t)))

2.2. Derivation of the Discrete Opacity Density for
SDF α

For a set of sampled points along the ray {pi = o +
tiv|i = 1, ..., n, ti < ti+1}, the rendered pixel color is

Ipred(o,v) =

n∑
i=1

Πi−1
j=1(1− αj)αici (12)

where αj is the discrete opacity value, which can be
derived from Equation 13.

αi = 1− exp(−
∫ ti+1

ti

ρ(t)dt)

= 1− exp(−
∫ ti+1

ti

−dΦs

dt (f(p(t)) · γ(p(t)))
Φs(f(p(t))) · γ(p(t)))

dt)

= 1− e(ln(Φs(f(p(ti+1))·γ(p(ti+1)))−ln(Φs(f(p(ti))·γ(p(ti))))

= 1− Φs(f(p(ti+1)) · γ(p(ti+1)))

Φs(f(p(ti)) · γ(p(ti)))

=
Φs(f(p(ti)) · γ(p(ti)))− Φs(f(p(ti+1)) · γ(p(ti+1)))

Φs(f(p(ti)) · γ(p(ti)))
(13)

2.3. Unbiasness and Occlusion-awareness of wβ

Given the discrete opacity density αi for the SDF repre-
sentation and the validity probability V(p(ti)). For simplic-
ity, we denote V(p(ti)) as Vi.

We then calculate the discrete opacity density β for the
“real” arbitrary surfaces. A physically reasonable solution is

βi = αi · Vi,

i.e., if the 3D point p(ti) is a valid point, Vi = 1, the dis-
crete opacity density for the “real” arbitrary surfaces remains
unchanged

βi = αi · Vi = αi.

While if the 3D point p(ti) is an invalid point, Vi = 0, the
discrete opacity density for the “real” arbitrary surfaces is
zero

βi = αi · Vi = 0.

Then we prove that wβ is unbiased and occlusion-aware.
In this proof, we denote wα,i = Πi−1

j=1(1−αj)αi and denote
wβ,i = Πi−1

j=1(1− βj)βi.

Unbiasness We first prove that wβ is unbiased. Given a
camera ray

{pi = o+ tiv|i = 1, ..., n, ti < ti+1}

and unbiased SDF weight

{wα,i|i = 1, ..., n},



we prove that if wα,k∗ attains a local maximal weight at a
valid surface intersection point p(tk∗), wβ,k∗ also attains a
local maximum.

We randomly sample a 3D point p(tk) in the local valid
region around p(tk∗), we only need to prove that wβ,k∗ >
wβ,k. We first prove that if k > k∗, wβ,k∗ > wβ,k.

Since p(tk∗) and p(tk) are distributed in one valid local
region, for any point p(tl) distributed between p(tk∗) and
p(tk) in the valid local region, i.e. k∗ ≤ l ≤ k, we have
Vi = 1.

Since wα,k∗ > wα,k, we have

wα,k∗ > wα,k

⇒Πk∗−1
l=1 (1− αl)αk∗ > Πk−1

l=1 (1− αl)αk

⇒Πk∗−1
l=1 (1− αl)αk∗ > Πk∗−1

l=1 (1− αl)Π
k−1
l=k∗(1− αl)αk

⇒αk∗ > Πk−1
l=k∗(1− αl)αk

⇒αk∗Vk∗ > Πk−1
l=k∗(1− αlVl)αkVk

⇒Πk∗−1
l=1 (1− αlVl)αk∗Vk∗

> Πk∗−1
l=1 (1− αlVl)Π

k−1
l=k∗(1− αlVl)αkVk

⇒Πk∗−1
l=1 (1− αlVl)αk∗Vk∗ > Πk−1

l=1 (1− αlVl)αkVk

⇒wβ,k∗ > wβ,k

(14)

If k ≤ k∗, we can prove that wβ,k∗ > wβ,k in a similar
way. Therefore, wβ,k∗ also attains a local maximal value at
a surface intersection point p(tk∗).

Occlusion-awareness Now we prove that wβ is occlusion-
aware. Given a camera ray

{pi = o+ tiv|i = 1, ..., n, ti < ti+1}

and occlusion-aware SDF weight

{wα,i|i = 1, ..., n}.

For any j, k ∈ {1, 2, ..., n} with the same opacity value
αj = αk, wα,j > 0, wα,k > 0, and j < k, we have

wα,j > wα,k,

i.e., p(tj) and p(tk) have the same opacity value and the
point p(tj) closer to the view point has a larger contribution
to the final output color than that of the other point p(tk).

We then prove that wβ,j > wβ,k.
If either p(tj) or p(tk) is a invalid surface point, neither

point need to satisfy the occlusion-aware rule. Therefore, we
only need to prove that when both p(tj) and p(tk) are valid
surface points, i.e. Vj = Vk = 1, wβ,j > wβ,k.

We suppose wβ,j < wβ,k, we have

wβ,j < wβ,k

⇒Πj−1
l=1 (1− αlVl)αjVj < Πk−1

l=1 (1− αlVl)αkVk

⇒Πj−1
l=1 (1− αlVl)αj < Πk−1

l=1 (1− αlVl)αk

⇒Πj−1
l=1 (1− αlVl) < Πk−1

l=1 (1− αlVl)

⇒Πj−1
l=1 (1− αlVl) < Πj−1

l=1 (1− αlVl)Π
k−1
l=j (1− αlVl)

⇒1 < Πk−1
l=j (1− αlVl)

(15)

Since 0 ≤ αl ≤ 1, Equation 15 is not true. Therefore,
when both p(tj) and p(tk) are valid surface points, wβ,j >
wβ,j . Q.E.D.

3. Implementation of NeAT-Net
We implement NeAT-Net as follows.

SDF-Net As shown in Figure 1 (left), we leverage the im-
plementation of the SDF network in DeepSDF [5], which
consists of 8 layers with hidden layers of width 512, and a
single skip connection from the input to the middle layer. We
initialize the parameters of the MLP with geometric initial-
ization [2]. For the single-view reconstruction experiment,
we use the concatenation of the embedded position and the
image feature as the input.

Validity-Net As shown in Figure 1 (right), the MLP con-
sists of 8 layers with Xavier initialization. We use the ReLU
activation between hidden layers and Sigmoid for the output.
For the single-view reconstruction experiment, we use an
additional MLP to encode the image features as shown in
the units marked with the dotted lines in Figure 1 (right). In
each layer, we use the addition of the outputs from the two
MLPs as the input to the activation unit.

Color-Net As shown in Figure 2, we use the implemen-
tation of the renderer MLP in IDR [8], which consists of 4
layers, with hidden layers of width 512. We apply positional
encoding [4] to improve the learning of high-frequency de-
tails. For the single-view reconstruction experiment, we use
an additional MLP to encode the image features as shown in
the units marked with the dotted lines in Figure 2. In each
layer, we use the addition of the outputs from the two MLPs
as the input to the activation unit.

4. Additional Results
We show additional qualitative results on the Deep Fash-

ion 3D Dataset [3] and Multi-Garment Net Dataset [1]. Fig-
ure 3 shows additional visual comparisons with baseline
methods on the Deep Fashion 3D Dataset [3]. Figure 4
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Figure 1. Left: the network structure of SDF-Net. Right: the network structure of Validity-Net. The units marked with solid lines are used
in the multi- and single-view reconstruction experiment. The units marked with dotted lines are only used in the latter.

shows additional visual comparisons with baseline methods
on the Multi-Garment Net Dataset [1]. Our method is able
to generate high-fidelity results.

5. Additional Evaluation Metrics
We compare our approach with the state-of-the-art vol-

ume rendering based methods – NeuS [6], HFS [7], and
surface rendering based method – IDR [8]. We report the
F-score (FS) on five examples for each category from Deep
Fashion 3D Dataset [3] and two examples for each category
from Multi-Garment Net Dataset [1] in Table 1.
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FS ↑ Ours NeuS [6] IDR [8] HFS [7]

D3D

long sleeve upper 0.563 0.140 0.169 0.200
short sleeve upper 0.575 0.214 0.333 0.257

no sleeve upper 0.693 0.333 0.228 0.176
long sleeve dress 0.630 0.237 0.199 0.276
short sleeve dress 0.647 0.170 0.190 0.230

no sleeve dress 0.693 0.235 0.276 0.233
pants 0.530 0.083 0.110 0.104
dress 0.680 0.277 0.253 0.163

average 0.626 0.211 0.220 0.205

MGN

LongCoat 0.145 0.110 0.110 0.074
TShirtNoCoat 0.077 0.060 0.048 0.031
ShirtNoCoat 0.226 0.157 0.112 0.139
ShortPants 0.016 0.011 0.009 0.003

Pants 0.041 0.052 0.037 0.024
average 0.101 0.078 0.063 0.054

Table 1. Quantitative evaluation on Deep Fashion 3D Dataset (D3D) [3] with F-score (FS) averaged over five examples per category, and
Multi-Garment Net Dataset (MGN) [1] with chamfer distance averaged on two examples per category.
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(a) GT (b) Ours (c) NeuS (d) IDR (e) HFS
Figure 3. Comparisons on open surface reconstruction of the Deep Fashion 3D Dataset [3]. NeAT is able to reconstruct high-fidelity open
surfaces while NeuS [6], HF-NeuS [7] and IDR [8] fail to recover the correct topologies.



(a) GT (b) Ours (c) NeuS (d) IDR (e) HFS
Figure 4. Comparisons on open surface reconstruction of the Multi-Garment Net Dataset [1]. NeAT is able to reconstruct high-fidelity open
surfaces while NeuS [6], HF-NeuS [7] and IDR [8] fail to recover the correct topologies.
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