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1. Future Work & Limitations
Since the EC and EDS datasets were recorded to bench-

mark pose estimation algorithms, they only contain static
scenes. Thus, we did not evaluate how our method, and
especially our frame attention module performs in scenes
with dynamic objects. Nevertheless, we believe that our
frame attention module can be useful for other trackers us-
ing event or standard cameras. Finally, our method relies
on the quality of the feature detection in grayscale images,
which can suffer in challenging scenarios. However, our
self-supervision strategy opens up the possibility of also
fine-tuning feature detectors for event cameras to increase
the robustness of feature detection.

2. Dataset Split
We use five sequences from the Event Camera dataset [9]

(EC) and four sequences from the Event-aided Direct
Sparse Odometry dataset [5] (EDS) as test sequences. For
fine-tuning, our pose supervision strategy is performed on
five sequences from the EC and one sequence from the EDS
dataset since EDS does not contain many sequences with
ground truth pose in well-lit conditions. The overview of
the test and fine-tuning sequences is shown in Tab. 1.

3. Multiflow Dataset
To qualitatively show the gap between the simulated and

the real data, we visualize in Fig. 1 some examples from
the Multiflow dataset [3], including the ground truth tracks
corresponding to the extracted Harris features [4]. This sim-
to-real gap can be reduced with our augmentation strategies
on the Multiflow dataset and with our proposed fine-tuning
strategy on real data, see Sec. 3.3.

4. Network Architecture Details
Tab. 2 shows the architectural details of our proposed

network, which consists of a feature network and our pro-
posed frame attention module. In the first step, two patch

*equal contribution.

Table 1. Test and fine-tuning sequences for the EC and EDS
dataset.

Dataset Sequence Name Frames

Te
st

EC

Shapes Translation 8-88
Shapes Rotation 165-245
Shapes 6DOF 485-485
Boxes Translation 330-410
Boxes Rotation 198-278

EDS

Peanuts Light 160-386
Rocket Earth Light 338-438
Ziggy In The Arena 1350-1650
Peanuts Running 2360-2460

Fi
ne

-T
un

in
g

EC

boxes hdr all
calibration all
poster 6dof all
poster rotation all
poster translation all

EDS all characters all

encoders inside the feature network process the event and
the grayscale patches, which have a patch size of 31 pixels.
After the correlation and the concatenation of the feature
maps from both patch networks, a joint encoder refines the
correlation map and introduces temporal information shar-
ing through a ConvLSTM layer. Finally, the frame attention
module processes each feature in one frame using shared
linear layers and one global multi-head attention over all
features in a frame. We refer to Fig. 2 in the main paper for
the network overview.

5. Quantitative Results & Tracking Metrics

As done in previous works [1, 2], we directly compare
feature tracking metrics for a feature tracking methodology
instead of computing pose errors using a pose estimation
module. While pose estimation is one application, it re-
quires the tuning of many hyperparameters specifically for
the tracker. Thus, it complicates evaluation and produces
biased results.
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Figure 1. Samples from the Multiflow dataset including the ground truth tracks corresponding to extracted Harris features.

As tracking metrics, we report for each test sequence
from the EC and EDS dataset the expected feature age
in Tab. 3, the feature age in Tab. 4, the inlier ratio in Tab. 5
and the normalized tracking error in Tab. 6. For the normal-
ized tracking error, we terminate the track if the distance to
the ground truth exceeds 5 pixels, as done in [1]. However,
it is not obvious how to compute this metric if the tracking
error is higher than 5 pixels directly after the initialization,
as it occurred for the baseline methods in Tab. 6. Further-
more, this metric does not consider the duration of the pre-
dicted tracks, e.g., one feature can be tracked for a short
time duration with a small tracking error, which would lead
to a small normalized tracking error. In contrast, a feature
tracked for a long time horizon but with a higher distance
to the ground truth will be assigned a higher tracking error.
This example shows that the normalized tracking error on
its own is not necessarily a good metric to evaluate stable
and long feature tracks. Thus, we decided to report the ex-
pected feature age as a metric since it considers the tracking
duration and the number of tracked features. Moreover, the
expected feature age is computed over a range of termina-
tion thresholds with respect to the ground truth, which ef-
fectively eliminates this hyperparameter for the metric com-
putation. Specifically, the expected feature age represents
the multiplication of the normalized feature age with the
fraction of successfully predicted tracks over the number
of given feature locations, defined as inlier ratio. A fea-
ture is defined to be tracked successfully if the predicted
feature location at the second timestep after initialization
is in the termination threshold to the ground truth location.
The normalized feature age is computed for the successfully
tracked features based on the division of the time duration
until the predicted feature exceeds the termination threshold
to the ground truth location by the duration of the ground
truth tracks. Because of the range of termination thresholds
and the consideration of the number of successfully tracked

features, the expected feature age represents an expressive
and objective metric for reporting the tracking performance.
Compared to [7], we evaluate the tracking performance and
thus use the same features for each method. Furthermore,
our evaluation focuses on the introduced Expected Feature
Age to account for the impact of outliers, which is typically
ignored.

6. Input Event Representation
Similar to previous works [2], our method requires spa-

tially and temporally aligned frames and events. This data
can be recorded by cameras outputting directly events and
images with one sensor (ATIS) or with beam splitter setups
using two cameras aligned through a mirror setup. To
provide the events in a patch as input to our network, we
first convert them to a dense event representation. Specif-
ically, we use a maximal timestamp version of SBT [10],
named SBT-Max, which consists of five temporal bins for
positive and negative polarity leading to 10 channels. Be-
cause of these design choices, the used event representation
can be considered a combination between TimeSurface [8]
and SBT [10]. In each temporal bin, we assign to each pixel
coordinate the relative timestamp of the most recent event
during the time interval of the temporal bin. For the EC
and EDS dataset, we convert events inside a 10 ms and 5 ms
window, respectively.

7. Additional Ablation Experiments
In addition to the ablation experiments reported in Tab. 2

in the main paper, we ablated the event input representation
as well as the augmentation parameters used during train-
ing. Due to time reasons, we performed the following ab-
lation experiments by training the reference model, which
does not include the frame attention module, for 70000
steps instead of 140000.



Table 2. Network architecture. Each convolution layer is followed
by LeakyReLU and BatchNorm layers whereas the linear layers
are followed by LeakyReLu layers. For the upsampling layers
(Up), we use bilinear interpolation. The three numbers after each
convolution layer indicate the two kernel dimensions and the out-
put channel dimension. In the case of the linear layer, the single
number stands for the output channels.
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2× Conv2D 1×1×32 31×31
2× Conv2D 5×5×64 23×23
2× Conv2D 5×5×128 15×15
2× Conv2D 3×3×256 5×5
2× Conv2D 1×1×384 1×1
2× Conv2D 1×1×384 1×1
Up + Conv2D 1×1×384 5×5
Conv2D 3×3×384 5×5
Up + Conv2D 1×1×384 15×15
Conv2D 3×3×384 15×15
Up + Conv2D 1×1×384 23×23
Conv2D 3×3×384 23×23
Up + Conv2D 1×1×384 31×31
Conv2D 3×3×384 31×31
2× Conv2D 3×3×384 31×31

Correlation Layer 31×31
2× Conv2D 3×3×128 31×31

2× Conv2D 3×3×64 15×15
2× Conv2D 3×3×128 7×7
ConvLSTM 3×3×128 7×7
2× Conv2D 3×3×256 3×3
Conv2D 3×3×256 1×1

Fr
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e
A
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n Linear 256 1×1

Linear 256 1×1
MultiHead Attention 1×1
LayerScale 256 1×1
Linear Gating 256 1×1
Linear 2 1×1

7.1. Input Representations

The input event representation to an event-based network
is an important consideration. Ideally, we aim to preserve as
much of the spatiotemporal information as possible while
minimizing the computational overhead of representation
generations. We train the reference network with different
representations: voxel grids [12], Stacking Based on Time
(SBT) [10], a non-normalized version of SBT (SBTNo
Norm) and a maximal timestamp version of SBT we call
SBT-Max where each pixel is assigned the timestamp of the
most recent event. The results are shown in Tab. 7. While
many event-based networks have demonstrated promising
results with voxel grids, their interpolation-based construc-
tion is computationally expensive. In contrast, SBT is a sim-

pler, synchronous event representation that is more efficient.
Each pixel simply accumulates or ”stacks” incoming events.
We find that SBT achieves competitive Expected FA com-
pared to voxel grids on nearly all sequences. However, the
performance of SBT degrades significantly without normal-
izing based on the number of events in the frame. In con-
trast to normalizing by the number of events, SBT-Max is
normalized using the duration of the time window. In prac-
tice, the statistic-free normalization procedure of SBT-Max
means that events outside the neighborhoods of tracked fea-
tures can be ignored. Because of this deployment advantage
and the competitive performance despite its more simplistic
normalization, we select SBT-Max as event representation.

7.2. Augmentation Parameters

To validate the utility of our augmentation strategy, we
train the reference network with different augmentation pa-
rameters. In Tab. 8, we present the experimental results
for using rotations (R) of up to ±30◦, scaling (S) of up to
±10%, and translations (T) of up to ±5px. The default
training settings use rotations of up to ±15◦, scaling of up
to ±10%, and translations of up to ±3px. Without augmen-
tation, we observe significant degradation on both datasets.
The benefit of additional translation augmentation is incon-
clusive, given the degradation on EC and improvement on
EDS. Lastly, with increased rotation augmentation, we ob-
serve that the performance improves on average for both
datasets.



Table 3. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Expected Feature Age.

Expected FA ↑
Sequence ICP [6] EM-ICP [11] HASTE [1] EKLT [2] Ours
Shapes Translation 0.306 0.402 0.564 0.740 0.856
Shapes Rotation 0.339 0.320 0.582 0.806 0.793
Shapes 6DOF 0.129 0.242 0.043 0.696 0.882
Boxes Translation 0.261 0.354 0.368 0.644 0.869
Boxes Rotation 0.188 0.349 0.447 0.865 0.691
EC Avg 0.245 0.334 0.427 0.775 0.818
Peanuts Light 0.044 0.077 0.076 0.260 0.420
Rocket Earth Light 0.045 0.158 0.085 0.175 0.291
Ziggy In The Arena 0.039 0.149 0.057 0.231 0.746
Peanuts Running 0.028 0.095 0.033 0.153 0.428
EDS Avg 0.040 0.120 0.063 0.205 0.472

Table 4. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Feature Age FA.

Feature Age (FA) ↑
Sequence ICP [6] EM-ICP [11] HASTE [1] EKLT [2] Ours
Shapes Translation 0.307 0.403 0.589 0.839 0.861
Shapes Rotation 0.341 0.320 0.613 0.833 0.797
Shapes 6DOF 0.169 0.248 0.133 0.817 0.899
Boxes Translation 0.268 0.355 0.382 0.682 0.872
Boxes Rotation 0.191 0.356 0.492 0.883 0.695
EC Avg 0.256 0.337 0.442 0.811 0.825
Peanuts Light 0.050 0.084 0.086 0.284 0.447
Rocket Earth Light 0.103 0.298 0.162 0.425 0.648
Ziggy In The Arena 0.043 0.153 0.082 0.419 0.748
Peanuts Running 0.043 0.108 0.054 0.171 0.460
EDS Avg 0.060 0.161 0.096 0.325 0.576

Table 5. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Inlier Ratio.

Inlier Ratio ↑
Sequence ICP [6] EM-ICP [11] HASTE [1] EKLT [2] Ours
Shapes Translation 0.986 0.916 0.957 0.882 0.962
Shapes Rotation 0.962 0.955 0.950 0.968 0.950
Shapes 6DOF 0.696 0.755 0.325 0.852 0.946
Boxes Translation 0.937 0.937 0.963 0.945 0.980
Boxes Rotation 0.946 0.798 0.908 0.980 0.949
EC Avg 0.905 0.872 0.820 0.925 0.957
Peanuts Light 0.740 0.868 0.815 0.780 0.802
Rocket Earth Light 0.369 0.401 0.293 0.375 0.374
Ziggy In The Arena 0.421 0.884 0.609 0.469 0.927
Peanuts Running 0.502 0.578 0.531 0.700 0.750
EDS Avg 0.508 0.683 0.562 0.581 0.713



Table 6. The performance of our proposed and the baseline trackers on the EDS and EC dataset in terms of Track Normalized Error.

Track Normalized Error ↓
Sequence ICP [6] EM-ICP [11] HASTE [1] EKLT [2] Ours
Shapes Translation 1.943 3.941 2.628 1.104 1.153
Shapes Rotation 1.870 2.614 2.536 1.723 1.981
Shapes 6DOF - - - 1.833 1.702
Boxes Translation 2.289 2.613 2.109 1.227 1.166
Boxes Rotation 2.571 3.855 3.383 1.375 1.836
EC Avg 2.168 3.256 2.664 1.452 1.568
Peanuts Light 3.185 2.323 2.432 3.560 3.957
Rocket Earth Light - 4.062 - 2.405 3.599
Ziggy In The Arena - 3.407 2.672 - 2.673
Peanuts Running - - - 3.812 3.444
EDS Avg 3.185 3.264 2.552 3.259 3.418

Table 7. The performance of the reference model when trained with different input event representations.

Expected FA ↑

Sequence SBT-Max SBT No
Norm SBT [10] Voxel

Grids [12]
Shapes Translation 0.780 0.160 0.887 0.802
Shapes Rotation 0.747 0.057 0.823 0.799
Shapes 6DOF 0.881 0.006 0.882 0.882
Boxes Translation 0.849 0.160 0.831 0.769
Boxes Rotation 0.614 0.057 0.677 0.638
EC Avg 0.774 0.088 0.820 0.778
Peanuts Light 0.388 0.020 0.373 0.372
Rocket Earth Light 0.271 0.009 0.284 0.282
Ziggy In The Arena 0.686 0.040 0.708 0.694
Peanuts Running 0.059 0.024 0.073 0.150
EDS Avg 0.351 0.023 0.359 0.374

Table 8. The performance of the reference model when trained with different augmentation parameters.

Expected FA ↑
Sequence R15 S10 T3 R30 T5 No Aug
Shapes Translation 0.691 0.861 0.720 0.723
Shapes Rotation 0.726 0.766 0.697 0.617
Shapes 6DOF 0.883 0.882 0.876 0.499
Boxes Translation 0.809 0.791 0.743 0.501
Boxes Rotation 0.616 0.703 0.448 0.337
EC Avg 0.745 0.801 0.697 0.535
Peanuts Light 0.361 0.384 0.337 0.311
Rocket Earth Light 0.284 0.275 0.274 0.094
Ziggy In The Arena 0.658 0.699 0.669 0.166
Peanuts Running 0.080 0.098 0.156 0.028
EDS Avg 0.346 0.364 0.359 0.150
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