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1. Hyperparameters & Hyperparameter
Tuning

Diversity target DT : The diversity target DT , set by the
user, is used to indicate how diverse the user wants the clus-
terings learned by DivClust to be. Specifically, given a sim-
ilarity metric D, DT represents an upper bound to inter-
clustering similarity. That is, for a target DT , the expecta-
tion is that the measured inter-clustering similarity DR of
the clusterings learned by the model should be DR ≤ DT .
In the paper, we measure inter-clustering similarity D with
the avg. NMI between pairs of clusterings, as shown in Eq.
6. Other similarity metrics, however, are also applicable,
under the assumption that they decrease monotonically as
the dynamic threshold d decreases.

Results presented in paper Tab. 3 demonstrate the ef-
fectiveness and robustness of DivClust for various diversity
targets, both in terms of successfully controlling diversity
and in terms of producing good consensus clustering out-
comes. We note, however, that, in the context of ensemble
clustering, identifying the optimal degree of inter-clustering
diversity is an open problem [3, 4] and beyond the scope of
this work, which proposes a robust method for controlling
diversity in deep clustering frameworks.

Memory bank size M : As mentioned in Sec. 3 of the pa-
per, in order to update the upper similarity threshold d, the
inter-clustering similarity score DR of the learned cluster-
ings must be calculated. This can be highly inefficient for
large datasets, as this operation can have very high compu-
tational cost. Therefore, to mitigate this problem, we mea-
sure inter-clustering similarity over a memory bank, rather
than over the entire dataset. Specifically, the memory bank
stores cluster assignments for the M samples last seen by
the model. The size M of the memory bank should be suffi-
cient for the memory bank to contain a representative subset
of the dataset, while taking into account the inherent trade-
off with regard to performance. In all our experiments we
set the size of the memory bank to M = 10, 000, which

we find sufficient, as our largest datasets (CIFAR10 and CI-
FAR100) have 60,000 samples.

Dynamic upper bound update interval T : The dynamic
upper bound d is updated regularly, based on the measured
inter-clustering similarity DR, estimated over the memory
bank. Specifically, it decreases when DR > DT and in-
creases otherwise, as outlined in paper Eq. 7. That calcula-
tion and the update of d are executed every T steps, set to
T = 20 in all our experiments. Increasing this value would
lead to more frequent updates of d and a corresponding in-
crease in the computational cost of DivClust, as the inter-
clustering similarity DR would be measured more times
during training. We found that T = 20 provides frequent
enough updates to achieve the desired diversity target DT

across datasets and deep clustering frameworks, with ac-
ceptable computational cost.

Upper bound momentum hyperparameter m: This
parameter regulates how big the steps of the upper bound
threshold d in either direction are, when the diversity target
DT is/is not satisfied. We note that higher values might
lead to instability due to large changes in d, however we
again found that our initial choice of m = 0.01 worked
well across datasets and frameworks.

The default values for the hyperparameters M , T and
m were fixed and proved robust across datasets and base
clustering frameworks. We note that no hyperparameter
tuning was found to be necessary when incorporating Div-
Clust to the deep clustering frameworks PICA [5], IIC [6]
and CC [8], which highlights DivClust’s plug-and-play
nature. Indeed, other than duplicating the projection heads
of each architecture to produce multiple clusterings, in
our experiments we used the same hyperparameters as
those reported in the respective papers of the base deep
clustering frameworks, including the number of training
epochs. More specifically, all three frameworks (IIC [6],
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Dataset Samples Image size Classes

CIFAR10 60,000 32X32 10
CIFAR100 60,000 32X32 100 (20)

ImageNet-Dogs 19,500 96X96 15
ImageNet-10 13,000 96X96 10

Table 1. A summary of the datasets used in the paper. We note
that for CIFAR100 we use the 20 superclasses for evaluation.

PICA [5] and CC [8]) use a ResNet-34 architecture. IIC
and PICA use Sobel preprocessing on all inputs and a linear
projection head, while CC uses a 2-layer MLP projection
head. CC resizes all images to 224X224. IIC and CC train
for 1,000 epochs, while PICA trains for 200. More details
can be found in the respective papers.

2. Datasets

In this section we provide details for the datasets used in
this work. We note that, in all cases, we train and evaluate
on both the train and test sets, following convention in deep
clustering works. A summary of the datasets is provided
in Tab. 1.
CIFAR10 [7]: An image dataset with 60,000 images, split
to 50,000 and 10,000 between the train and test sets. The
dataset has 10 classes, and the size of the images is 32X32.
CIFAR100 [7]: An image dataset with 60,000 images, split
to 50,000 and 10,000 between the train and test sets. The
dataset has 100 classes, organized in 20 superclasses, and
the size of the images is 32X32. Following previous works,
we evaluate with the 20 superclasses.
ImageNet-Dogs [1]: A dataset consisting of 19,500 images
of dogs organized in 15 classes. Samples were extracted
from the ImageNet [2] dataset, and their size is 96X96.
Imagenet-10 [1]: A dataset of 13,000 96X96 images in 10
randomly chosen classes, extracted from the ImageNet [2]
dataset. We note that we use the same classes as previous
works [1, 8] for fair comparisons.

3. Complexity & Runtime

Complexity: As stated in paper Sec. 5, the complexity of
DivClust is O(nK2C2), where n is the batch size, K is the

K DT T Time (h) Time Increase (%)

1 1. - 39.1 0
20 1. - 40.5 3%
20 0.9 20 44.6 14%

Table 2. Runtimes of CC, for 1000 epochs, with CIFAR100 and
image size 224X224 during training.

number of clusterings, and C is the number of clusters in
each clustering. Importantly, given fixed hyperparameters
n, K and C, the computational cost of DivClust is fixed,
regardless of the size of the model and the dimensionality
of the input data. Therefore, DivClust is scalable to large
datasets and deep learning architectures.

Runtime Analysis: To analyze the practical impact of
DivClust we first present runtimes with CC [8] on CI-
FAR100 in Tab. 2. The experiments were conducted with
CC’s default settings of 1000 epochs and images resized to
224X224 during training. We present results for K = 1
clustering (the default CC framework), K = 20 without Di-
vClust (where DT = 1 so the diversity loss is not used and
d is not updated), and K = 20 with DivClust (DT = 0.9).
The update interval for d is set to the default T = 20. We
note that, in terms of runtime, the specific value of the diver-
sity target DT does not have an impact, as long as DT < 1.
To provide a more robust analysis of DivClust’s components
with regard to their computational cost, in Tab. 3 we explore
the impact of a) the dimensionality of the input data, and b)
the frequency of the updates of d. Specifically, we train CC
for 10 epochs (2,340 steps) with the standard image size for
CIFAR100, namely 32X32, and include results for a less
frequent update of d, where T = 200. All experiments
were conducted on a single RTX6000 GPU.

For completeness, in addition to the experiments
of Tabs. 2 and 3, which were conducted specifically for run-
time analysis while ensuring that interference in their ma-
chine was kept at a minimum, we present approximate run-
time figures for each dataset and framework with DivClust
in Tab. 4.

Conclusions: Based on the complexity of the framework
and the results presented in Tabs. 2 and 3, we note the fol-
lowing:

• The practical impact of DivClust in terms of increased
training time is very small. Specifically, as seen
in Tab. 2, CC with DivClust requires 44.6 hours to
train, as apposed to 39.1 hours without DivClust (a
14% increase). For comparison, the alternative of run-
ning the model 20 times would require 32 days, and

K DT T Time (s) Time Increase (%)

1 1. - 141 0
20 1. - 161 14%
20 0.9 200 166 17%
20 0.9 20 209 48%

Table 3. Runtimes of CC, for 10 epochs, with CIFAR100 and
image size 32X32 during training.



Method CIFAR10 CIFAR100 ImageNet-10 ImageNet-Dogs

IIC [6] 21 - - -
PICA [5] 6.5 - - -
CC [8] 44 44.5 14 22

Table 4. Runtimes in hours for various models and datasets, for 20 clusterings with DivClust, using the experiment configurations proposed
in the respective papers.

(a) DT = 1, DR = 0.987 (b) DT = 0.95, DR = 0.948 (c) DT = 0.9, DR = 0.897

(d) DT = 0.8, DR = 0.807 (e) DT = 0.7, DR = 0.696

Figure 1. Visualizations of inter-clustering similarity for ImageNet-10 for various diversity targets DT . Specifically, the heatmaps in each
figure represent the NMI between individual clusterings in the corresponding clustering set. For each DT , we also report the measured avg.
inter-clustering NMI DR of the learned clusterings. The figure illustrates how reduced diversity targets DT (and, accordingly, reduced
inter-clustering similarity DR) result in more diverse clusterings. Best seen in color.

would offer no control over the outcome in terms of
inter-clustering diversity.

• Given that the computational cost of DivClust is inde-
pendent of the model’s backbone, its relative impact
decreases for larger models and/or input dimensional-
ity, given fixed n, C and K. That is evident by compar-
ing Tabs. 2 and 3, where increasing the size of the input
images from 32X32 (Tab. 3) to 224X224 (Tab. 2) de-
creases the relative runtime increase from 48% to 14%,
as the backbone’s load increases while DivClust’s re-
mains fixed. This makes DivClust well suited for deep
model architectures.

• Experiments for K = 20 without DivClust (DT = 1)
were faster than experiments with DivClust (DT < 1)
by a small margin, which is to be expected. How-
ever, as was shown in Sec. 4 of the paper, without
DivClust clusterings tend to converge to the same so-

lution. Therefore, this approach is unsuitable for pro-
ducing multiple, diverse clusterings, and, by extension,
unsuitable for consensus clustering.

Overall, the computational cost produced by DivClust is
very small relative to that of the base deep clustering mod-
els. Furthermore, the relative impact of DivClust decreases
for larger architectures. Therefore, DivClust can be consid-
ered to be a highly efficient and scalable method for pro-
ducing diverse clusterings in the context of deep clustering.

4. Visualizing inter-clustering diversity
To illustrate the impact of DivClust, we present in Fig. 1

visualizations of the diversity between clusterings, for
sets of clusterings produced by DivClust. Each subfigure
in Fig. 1 corresponds to a set of 20 clusterings produced by
DivClust combined with CC, trained on ImageNet-10 for
various diversity targets DT . Specifically, the subfigures



Dataset DT CIFAR10 CIFAR100 ImageNet-10 ImageNet-Dogs

Metric NMI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

CC-Kmeans - 0.654 0.698 0.523 0.429 0.405 0.235 0.792 0.841 0.669 0.457 0.444 0.284
CC-Kmeans/S - 0.674 0.69 0.554 0.428 0.402 0.228 0.792 0.842 0.673 0.456 0.444 0.283
CC-Kmeans/F - 0.684 0.762 0.599 0.438 0.409 0.210 0.797 0.847 0.685 0.458 0.444 0.285

CC - 0.705 0.790 0.637 0.431 0.429 0.266 0.859 0.893 0.822 0.445 0.429 0.274
DeepCluE - 0.727 0.764 0.646 0.472 0.457 0.288 0.882 0.924 0.856 0.448 0.416 0.273

Mean

1.

0.678 0.763 0.604 0.418 0.427 0.257 0.859 0.895 0.824 0.457 0.451 0.297
Max 0.679 0.763 0.605 0.423 0.427 0.261 0.861 0.896 0.825 0.459 0.453 0.299

DivClust A 0.678 0.763 0.604 0.418 0.425 0.257 0.858 0.894 0.823 0.458 0.453 0.298
DivClust B 0.678 0.763 0.604 0.418 0.424 0.267 0.858 0.895 0.823 0.459 0.452 0.298
DivClust C 0.678 0.763 0.604 0.418 0.424 0.257 0.86 0.895 0.825 0.459 0.451 0.298

Mean

0.95

0.678 0.762 0.603 0.43 0.435 0.276 0.87 0.914 0.848 0.459 0.449 0.296
Max 0.688 0.773 0.616 0.433 0.447 0.28 0.914 0.963 0.92 0.461 0.452 0.298

DivClust A 0.683 0.768 0.61 0.43 0.434 0.276 0.916 0.964 0.922 0.452 0.461 0.298
DivClust B 0.679 0.762 0.603 0.431 0.435 0.277 0.863 0.898 0.828 0.46 0.451 0.297
DivClust C 0.677 0.76 0.602 0.431 0.434 0.276 0.891 0.936 0.878 0.461 0.451 0.297

Mean

0.9

0.703 0.794 0.644 0.422 0.43 0.262 0.861 0.903 0.832 0.471 0.479 0.323
Max 0.731 0.818 0.681 0.429 0.438 0.27 0.917 0.965 0.924 0.483 0.493 0.34

DivClust A 0.731 0.817 0.681 0.42 0.429 0.259 0.917 0.965 0.924 0.453 0.486 0.335
DivClust B 0.708 0.799 0.653 0.422 0.431 0.262 0.866 0.908 0.837 0.477 0.486 0.33
DivClust C 0.678 0.789 0.641 0.422 0.426 0.258 0.879 0.92 0.859 0.48 0.487 0.332

Mean

0.8

0.675 0.782 0.632 0.419 0.417 0.26 0.816 0.84 0.754 0.455 0.45 0.296
Max 0.762 0.847 0.727 0.429 0.434 0.275 0.858 0.909 0.83 0.487 0.509 0.347

DivClust A 0.762 0.847 0.727 0.419 0.42 0.275 0.835 0.845 0.779 0.486 0.504 0.347
DivClust B 0.714 0.807 0.664 0.419 0.414 0.258 0.878 0.919 0.851 0.459 0.453 0.298
DivClust C 0.724 0.819 0.681 0.422 0.414 0.26 0.879 0.918 0.851 0.458 0.448 0.296

Mean

0.7

0.645 0.703 0.556 0.43 0.425 0.267 0.742 0.747 0.643 0.458 0.453 0.298
Max 0.704 0.789 0.678 0.459 0.469 0.304 0.798 0.83 0.743 0.49 0.512 0.352

DivClust A 0.677 0.773 0.621 0.441 0.446 0.286 0.798 0.83 0.743 0.476 0.46 0.318
DivClust B 0.665 0.725 0.621 0.434 0.438 0.272 0.875 0.916 0.837 0.492 0.456 0.315
DivClust C 0.71 0.815 0.675 0.44 0.437 0.283 0.85 0.90 0.819 0.516 0.529 0.376

Table 5. Results combining DivClust with CC for various diversity targets DT and for various methods of extracting single clustering
solutions. We underline DivClust results that outperform the single-clustering baseline CC.

Method Clusterings DT Mean Acc. Max. Acc. Cons. Acc.

CC 1 - 0.893 0.893 0.893
CC-20x 20 - 0.891 0.895 0.894

DivClust

20 1. 0.895 0.896 0.895
20 0.95 0.914 0.963 0.936
20 0.9 0.903 0.965 0.92
20 0.8 0.84 0.909 0.918
20 0.7 0.747 0.83 0.9

Table 6. Results on Imagenet-10 for the baseline single-clustering method CC, for 20 clusterings learned by training CC 20 times with
different seeds (CC-20x), and for DivClust with various diversity targets DT . We note the best results with bold.

consist of 20X20 matrices, where each value (i, j) repre-
sents the NMI between clusterings i and j, with higher val-
ues corresponding to more similar clusterings.

In Fig. 1, one can see that decreasing the diversity target
DT indeed results to less similar clusterings. Furthermore,
one can see that the similarities between pairs of clusterings



Figure 2. The training loss Ltotal for PICA, CC and ICC, trained on CIFAR10 to learn a single clustering (K=1), multiple clusterings
without diversity (K=20, DT = 1) and multiple clusterings with diversity (K=20, DT = 0.7). Best seen in color.

are not uniform. That is, they are not all equally diverse with
each other. This reflects the fact that DivClust controls the
avg. inter-clustering similarity, therefore individual pairs
of clusterings may have a higher similarity score than DT ,
as long as the avg. similarity score DR is lower than DT .
We note that it is trivial to modify DivClust’s loss to en-
force diversity between each pair of clusterings. However,
for the purposes of consensus clustering, the more relaxed
constraint of controlling diversity on the aggregate was pre-
ferred.

5. Extended CC results

In this section, detailed results are presented for ex-
periments combining DivClust with CC. Following the
methodology outlined in Section 4 of the paper, Tab. 5 in-
cludes results for CIFAR10, CIFAR100, ImageNet-Dogs
and ImageNet-10, reported for each of the three proposed
methods for extracting single clustering solutions, namely
DivClust A (selecting the clustering k with the lowest loss
Lmain(k)), DivClust B (applying consensus clustering),
and the method we found to be the most robust, DivClust
C (selecting the 10 best clusterings in terms of their loss,
and applying consensus clustering on them). In Tab. 5,
we also include the mean/max values of each metric over
the clustering ensembles produced for each setting, noting
that, in practice, identifying clusterings whose performance
matches those values is non-trivial, as we assume that we
do not have access to the labels.

Finally, in Tab. 6, we present results on Imagenet-10 for
DivClust trained with various diversity targets DT , compar-
ing it with the single-clustering baseline CC and with a clus-
tering ensemble produced by training a single-clustering
model 20 times with different seeds (CC-20x). In all cases,
the consensus clustering solution was produced by identi-
fying the 10 best performing clusterings of each set with
regard to their loss, and applying the SCCBG [9] consen-
sus clustering algorithm. Tab. 6 demonstrates that, despite

requiring approximately 20X more training time, produc-
ing the ensemble from multiple individually trained mod-
els leads to minimal performance gains over the baseline,
as opposed to DivClust, which consistently outperforms the
baseline in terms of consensus clustering accuracy.

6. Joint optimization and convergence analysis
To further demonstrate that DivClust can be straightfor-

wardly integrated in deep clustering frameworks, we ana-
lyze its behavior with regard to the training loss and its con-
vergence. Specifically, in Fig. 2, we present the total loss
Lmain during training for the three deep clustering frame-
works CC [8], PICA [5] and IIC [6]. The frameworks are
applied on CIFAR10 and trained to learn a) a single clus-
tering, b) multiple clusterings (K=20) without diversity re-
quirements (DT = 1), and c) multiple clusterings with di-
versity (DT = 0.7).

We observe that different frameworks do not behave in
exactly the same way. Specifically, while CC’s loss curve
remains virtually identical in all three examined cases,
PICA and IIC converge to different loss values when Div-
Clust is active (i.e. when DT = 0.7). We attribute this to the
frameworks’ different objectives and architectures. How-
ever, in all cases, the loss converges smoothly, which indi-
cates that our proposed loss Ldiv can be optimized jointly
with each framework’s base loss Lmain without requiring
adjustments and without disturbing the training process.
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