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A. Videos

Videos depicting the diffusing process (Y; and residuals)
are included with the supplementary materials. The exam-
ples are from the Middlebury dataset, with a scaling factor
of x32.

B. Training set up

We train our method with an Adam optimizer [5] with
B1 = 0.9, By = 0.999, a learning of 103, and weight de-
cay parameter set to 10~°. Furthermore, we clip gradients
to a maximum norm of 0.01 for stability during training.
We find that DADA reaches convergence after 4500, 550,
and 300 epochs for the datasets of Middlebury, NYUv2, and
DIML respectively. During training, we apply data aug-
mentation, which includes horizontal flips, random crop-
ping, and rotating the samples by up to 15 degrees. We nor-
malize all depth maps with their respective dataset-specific
standard deviation. The Mean is not subtracted since the
adjustment step assumes positive values.

The feature extractor is a U-Net [6] with ResNet-50 [3]
backbone that operates on a x2 upsampled guide. Subse-
quently, the produced feature maps are downsampled again
to the original spatial resolution. We ablate this design
choice in Appendix G.

C. Experimental set up

Our experiments and baselines closely follow the setup
described in [ 1] (supplementary material) and compare with
mostly the same baselines. All methods are trained with the
default settings of the Adam optimizer and a learning rate
of 10~ (except PMBA: 1073, FDSR: 5 x 10~%). We train
all learned models until convergence, which is reached after
2500, 250, and 150 epochs on the datasets of Middlebury,
NYUv2, and DIML respectively. We reduce the learning
rate by a factor of 0.9 every 100, 10 and 6 epochs for Mid-
dlebury, NYUvV2, and DIML, respectively. In order to limit
the GPU memory consumption to a manageable level, we

“Equal contribution.

Scale x4 x8 x16 x32
MSE [em?] | 2.5240.04 5.63+£0.09 15.64£0.10  47.640.50
MAE [cm] 0.11+£0.00  0.2040.00 0.47+0.00 1.3540.01
MAPE [%] | 0.04£0.00 0.074+0.00 0.174+0.00  0.4640.00
VV [%] 0.06+0.00  0.124+0.00  0.30+£0.00  0.9140.01
EE [%] 0.8240.02  1.434+0.01 2.9240.02  8.09£0.03
MSE [em?] | 4.8740.03 17.14£0.30  59.240.60  22343.00
MAE [cm] 0.64+0.00 1.33+0.01  2.65+0.03  5.7640.02
MAPE [%] | 0.17£0.00 0.36+0.00 0.73+0.01  1.62+0.01
VV [%] 0.05+0.00 0.184+0.00 0.66+0.01  2.4040.03
EE [%] 3.68+£0.06 9.904+0.20 23.240.30  44.14+0.08
MSE [em?] | 1.3040.02 2.8740.06 7.754£0.12  38.640.80
MAE [cm] 0.1740.00  0.2740.00  0.60+0.01  1.9040.02
MAPE [%] | 0.06+0.00 0.10+0.00 0.214+0.00  0.68+0.01
VV %] 0.0340.00  0.07+£0.00  0.18£0.00  0.85£0.01
EE [%] 2.4440.01 3.7540.03  7.3940.08  19.5+0.19

Table Al. Variability of metrics on the Middlebury, NYUv2, and
DIML datasets in the top, middle, and bottom sections, respec-
tively.

had to reduce the patch size for some baselines from 2562
to 1282 for PMBA x4 even to 642. For the guided filter, we
use a radius of 8, and for the SD Filter, we use the following
hyperparameter configuration: A = 0.1, o4 = 60, o, = 30.
For Pixtransform, we use the standard hyperparameters re-
ported in their paper [2].

D. Stability & Statistics

We also repeated the training using 4 additional (5 total)
different random seeds to determine the epistemic uncer-
tainty/stability of our method. We observe little variability
across runs that consistently surpass previous results, see
Tab. Al.

E. GPU memory consumption

In Figure A1 we show the GPU memory consumption of
our method at training time (a) and at inference (b) and con-
trast them to the LGR approach, which is our closest com-
petitor and is also a hybrid method. DADA requires ~23
GB at training time and ~4 GB at inference time, regard-
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(b) Memory requirement during testing

Figure A1. Memory requirements for a batch of 8 samples for
DADA and LGR. Constant memory requirements are an advantage
at higher scaling factors.

less of the upsampling factor, while LGR uses up to ~64
GB for training and ~35 GB for testing.

F. Inference time

We measure a mean inference time for the proposed
method of ~100 ms per sample when using a batch size
of 32 on an NVIDIA GeForce RTX 3090, with all other pa-
rameters equal to the canonical ones previously described.
We note that the inference time is invariant w.r.t. the upsam-
pling factor. For LGR we found it to increase with the scal-
ing factor: 50 ms, 84 ms, 240 ms, and 910 ms for x4, X8,
x 16, and %32, respectively. In contrast, the feedforward
methods are a lot faster — most of them are below 20 ms.

G. Further ablations

Upsampling of the guide. We explore two different ways
of employing a U-Net feature extractor: Our default case
where we upsample the guide by x2 and we downsample
the obtained feature maps afterward and a case without up-
and downsampling modifications. Tab. A3, shows that this
modification brings an improvement in the settings of x4 to
x 16, while a slight weakening effect is observed for x32.
Our intuition is that upsampling helps to produce sharp and
accurately localized edges, which is especially beneficial
for smaller scaling factors. Inversely, we speculate that for
x 32 global context plays a bigger role, and hence, upsam-
pling the guide decreases the receptive field of the U-Net,

U-Net U-Net U-Net U-Net U-Net U-Net FPN DL3+
RNI18 RN34 RN50 ENBO ENBI ENB2 RN50 RN50

MSE 5.69 5.57 5.63 6.85 6.77 6.68 7.09 7.71
MAE 0.20 0.20 0.20 0.24 0.24 0.24 0.27 0.30

Table A2. Middlebury, scale x8. DADA is invariant to the encoder
depth and fairly invariant to the choice of model architecture.

x4 x8 x16 x32
MSE/MAE MSE/MAE MSE/MAE MSE/MAE
Middlebury

Base 2.58/0.11 5.63/0.20 16.3/0.48 50.6/1.38

No up-/down | 2.88/0.12 5.92/0.22 18.3/0.55 49.9/1.36
NYUv2

Base 4.83/0.64 16.6 /1.30 59.0/2.64 228/5.81

No up-/down | 6.12/0.72 18.7/1.40 60.7/2.72 207 /5.56
DIML

DADA 1.33/0.17 2.93/0.28 7.61/0.59 39.8/1.92

No up-/down | 1.59/0.18 3.28/0.30 8.56/0.64 36.8/1.82

Table A3. Ablation: method as proposed vs. method which skips
upsampling before and downsampling after the feature extractor.
Errors are in cm? (MSE) and in cm (MAE). Up-/downsampling
appears to have a positive effect for lower scales and a neutral or
slightly negative effect for very large scales.

which in turn deteriorates the method’s performance.

Randomization of iterations. In Fig. A2 we show the ef-
fect of randomizing the number of iterations without gradi-
ent at training time (as proposed) against choosing it to be
a constant Ng,g = 8000. At test time, it seems that both
strategies eventually converge to an equally performant so-
lution. However, we note that our proposed way of training
leads to faster convergence in the diffusion-adjustment iter-
ations.

Feature Extractor. We explored additional feature ex-
tractors by replacing the base case (U-Net with ResNet-50)
with two more different ResNet depths (18 and 34) and Ef-
ficientNets (BO, B1, B2). We also tested different feature
extractors (FPN, DeepLabv3+) with the ResNet-50 back-
bone. We show the results in Tab. A2. DADA is robust to
changes in the exact architecture of the feature extractor.

H. Additional metrics

We concur that other metrics can provide additional in-
sight into the method’s performance and facilitate future
comparisons. We computed the mean absolute percentage
error (MAPE), value errors (VE), and edge errors (EE) as
described in [4]. The advantage of DADA w.r.t. current
methods remains clear, see Tab. A4.
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during training speeds up convergence at inference time.
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Middlebury NYUv2 DIML
in [%)] MAPE/VE/EE  MAPE/VE/EE MAPE/VE/EE
MSG 08/1.7/147 19/3.0/498 09/12/248
DKN 1.2/27/219 24/44/558 14/22/323
FDKN | 1.2/2.6/21.7 24/45/557 14/22/343
PMBA | 1.9/4.1/357 27/52/574 08/12/25.0
FDSR 1.6/3.7/21.6 34/72/634 1.6/25/363
LGR 06/12/12.8 1.8/2.7/49.0 0.9/1.3/26.7
DADA | 05/09/81 1.6/2.4/443 0.7/09/19.7

Table A4. Middlebury, scale x32, all numbers are in [%].
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Figure A3. Numerical example of the adjustment step.

I. Main results as curves

For improved interpretation, the RMSE numbers from
Tables 1 and 2 from the main paper are here also displayed
as curves. These plots can be seen in Figure A4.

J. Intuition behind the adjustment step

The values of r; and R; are computed precisely so that
down(Y;) matches S. The values in r; are per-patch adjust-
ment coefficients. A numerical example of these operations
is shown in Fig. A3 to help convey the intuition behind this
operation.

K. Qualitative results

We provide additional results from for all learned meth-
ods, the color version of LGR, and Pixtransform — the
strongest unsupervised competitor — for all three datasets
and all four scaling factors in Table A5, Table A6, and Ta-
ble A7.

The plots how that for smaller upsampling factors, all
learned methods perform relatively well, while for larger
upsampling factors, the advantages of DADA become more
apparent: Shapes are represented more accurately and edges
are sharper.
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Figure A4. Curves with numbers from Tables 1 and 2 in main paper for better interpretability of results. RMSE is used instead of MSE for
improved visualization across scales.
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