
Supplementary material

Unsupervised space-time network
for temporally-consistent segmentation of multiple motions

Etienne Meunier
Inria, Rennes, France

etienne.meunier@inria.fr

Patrick Bouthemy
Inria, Rennes, France

patrick.bouthemy@inria.fr

1. Linking predictions and segments selection
We detail the procedure for linking predictions in a sub-

sequence and for selecting optimal segments for evalua-
tion. Subsequences are composed of T+1 consecutive flow
fields. Let us define:

m̆t(i) = arg max
k=1,..,K

mk(i, t), (1)

where mk(i, t) is the probability of site i to belong to seg-
ment k at time t. Let m̆t be the segmentation map at time t
encompassing the (up to) K segments predicted by the net-
work, m̆t = {m̆t(i), i ∈ I}. In other words, m̆t is the label
array representing the set of segments extracted at time t,
segments being (non necessary connected) layers. We will
also use the term mask to designate m̆t, when no confu-
sion can occur. The prediction of the network is given for
a triplet of input flow fields (ft−1; ft; ft+1) as a triplet of
masks (m̆t−1; m̆t; m̆t+1) for τ = 1. All those triplet pre-
dictions are produced in parallel and the triplet output are
independent as illustrated in Fig.1.

1.1. Linking predictions

The masks in the same triplet are sharing common labels
but not necessary across triplets. By label, we mean mask
number. We have to link the labels by finding correspon-
dences between triplets. Since we have three versions of
the same mask m̆t, it is straightforward to achieve it.

First, we need to introduce an additional notation m̆t′

t

as defined below. The segmentation mask m̆t′

t (t′ ∈ {t −
1, t, t + 1}) of width W and height H , consisting of K
non-overlapping classes (m̆t′

t ∈ {1, ..,K}W×H ) and cor-
responding to flow ft, is the one predicted by the network
when it takes a triplet centered around t′ as input. We have
to find the best label association between instances m̆t′

t of
the same mask. To do that, we compute a label reassign-
ment table that will be applied to the two masks m̆t

t and

Figure 1. Output of the network by triplet (for τ = 1) within a
subsequence covering the time interval [0, T ]. The lower index t

of each mask m̆t′
t represents the time instant of the corresponding

flow field ft, and the upper one t′ corresponds to the time instant
when it is produced, that is, the one of the reference (central) flow
field of the triplet. Segmentation masks with the same lower index
correspond to different segmentation instances of the same flow
field.

m̆t
t−1. The reassigned label l∗ for each label l ∈ {1, ..,K}

is given by:

l∗ = arg max
k∈{1,..,K}

J(kt−1
t , ltt) + J(kt−1

t−1, l
t
t−1), (2)

where J is the IoU score between two segments. The binary
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array kt
′

t is defined as follows:

kt
′

t (i) =

{
1 if m̆t′

t (i) = k
0 otherwise

(3)

lt
′

t is defined in a similar way. We proceed by pairs, since
two consecutive triplets share two masks as illustrated in
Fig.2 (the pairs of arrows). Starting from t = 0, we propa-
gate the labels to the whole subsequence using the criterion
of eq.(2). After the label reassignment propagation, we re-
name each m̆t′

t as m̄t′

t .

Figure 2. Propagation of the labels (i.e., masks numbers) over the
subsequence.

1.2. Select optimal labels

We select an optimal set of segments for evaluation,
based on the ground truth, for the entire subsequence. The
goal is to show that, since we have coherent labels within
the subsequence, we can select the optimal segments at the
subsequence level. First, we unroll our sequence by only
keeping the central prediction for each step from t = 1 to
t = T − 1, and just retrieving the single instance produced
for the first (t = 0) and last (t = T ) time steps as depicted
in Fig.3.

Figure 3. Formation of the mask series {m̄t, t = 0, .., T} over
the subsequence for evaluation , once the label propogation step is
achieved.

Then, for the entire subsequence, we select the subset S∗

of labels (that is, of segments) to constitute the predicted

foreground, using the binary ground-truth gt. The selected
label subset S∗ is given by:

S∗ = arg max
S⊂P({1,..,K})

T∑
t=0

J(
⋃
l∈S

l̄t, gt), (4)

where P({1, ..,K}) is the partition of the labels in the sub-
sequence, and the binary masks l̄t correspond to the label
mask m̄t. Once we have selected the subset S∗ of labels, we
can use it to build our binary segmentation {st, t = 0, .., T}
on the whole subsequence for evaluation, as illustrated in
Fig.5.

Figure 4. Comparison of the selected segments with the ground
truth for evaluation.

2. Impact of subsequence length
In the temporal segment linkage and the segment selec-

tion process described above, we take into account a subse-
quence of length T +1. For the results reported in the main
paper, we used a subsequence length of 10 frames. How-
ever, we can vary the subsequence length to evaluate the
robustness of our method to this parameter. All the evalua-
tions regarding the impact of the subsequence length, are
produced from the same trained network and initial seg-
mentation. They are plotted in Fig.5. Longer subsequences
are more challenging since they require a stronger temporal
consistency. Also, they can be more impacted by occlusions
or flow estimation errors, which can break label propaga-
tion.

We can see that our method is robust to the choice of the
subsequence length, and that it is performing well on long
subsequences as well.

3. Additional experiments
3.1. Training without data augmentation

To extend our ablation study, we have also carried out
the evaluation of the case when our network is trained with-
out any data augmentation. Results are collected in Table 1.
Clearly, as expected, the data augmentation improves per-
formance.



Figure 5. Evaluation of our temporal segment linkage and segment
selection process for different subsequence lengths on the three
datasets.

Data Augmentation Davis Val SegTrackV2 FBMS
With 73.2 55.0 59.4
Without 70.1 52.3 50.4

Table 1. Impact of the data augmentation. Scores (Jaccard index)
obtained on the three datasets.

3.2. Impact of the temporal interval τ

Regarding the τ parameter (i.e., the temporal interval be-
tween the flows of the input triplet), we trained our network
with the full configuration and randomly sampled τ values
at training time. Let us remind that the flow ft−τ (respec-
tively, ft+τ ) is computed between image frames at time in-
stants t− τ and t− τ +1 (respectively, t+ τ and t+ τ +1).
We uniformly sample τ among a set of values during train-
ing. At inference, we still use only τ = 1 for the sake of
efficiency. Thus, this experiment could also be perceived as
a type of data augmentation.

τ while training Davis Val SegTrackV2 FBMS
{1} 73.2 55.0 59.4
{1,2,3,4,5,9,10,12} 73.0 54.3 57.9

Table 2. Impact of the use, at training time, of different values for
the time interval τ in the input flow triplet. Scores (Jaccard index)
obtained on the three datasets.

As we can observe in Table 2, it has no sensible impact
on results (even a slight performance decrease). In future
work, we plan to investigate the combination of different τ
values, including negative values, at test time.

3.3. Results on Davis2017-motion

In addition to the datasets (DAVIS2016, FBMS59,
SegTrackV2), we have evaluated our method on the
DAVIS2017-motion dataset. We added this experiment in
the supplementary material since DAVIS2017-motion was
released on Nov.12, 2022, after the initial submission of
our paper. DAVIS2017 [1] is an extension of DAVIS2016
dataset that includes additional videos with multi-object
contents, resulting in multiple-segment annotations for the
ground truth. It contains a total of 90 videos, split into 60
for training and 30 for validation. DAVIS2017-motion is a
curated version of the DAVIS2017 dataset performed by the
authors of [2] for a fair evaluation of motion segmentation
based on flow information only, where connected objects
sharing common motion are merged in the ground truth of
the validation test.

Method / Scores J&F ↑ J ↑ F ↑
Ours 42.0 38.8 45.2
MoSeg 35.8 38.4 33.2
OCLR 55.1 54.5 55.7

Table 3. Comparative evaluation on the DAVIS2017-motion val-
idation set. The Jaccard index J expresses the correct overlap
(intersection over union) between the extracted segments and the
ground truth, while F focuses on segment boundary accuracy (the
higher the better). J&F is the mean of the two. Evaluation is
performed on the video as a whole, and reported scores are the av-
erage of the individual video scores.

We evaluated our method on the validation set using the
official DAVIS-2017 evaluation algorithm that involves a
Hungarian matching process. Results are collected in Ta-
ble 3. On this dataset, our method has a better J&F score
than MoSeg [3] (42.0 vs 35.8), while OCLR flow-only [2]
outperforms both (55.1), but OCLR is trained using syn-
thetic data whose generation involves human annotation.

3.4. Differentiation of motion patterns

Network output may be limited to three segments with
K = 4, not due to the model itself but to the train set. In-
deed, DAVIS2016 train set comprises too few videos with
several moving objects. We have noticed in other applica-

Figure 6. Different instants of ”goats1” video of FBMS59. First
row: input optical flow (HSV color code). Second row: motion
segments predicted by the network (before applying the global
temporal linkage), and superimposed on the video frame (except
background mask); when static, goats are merged with backgound.



tions that the network, trained on a dataset involving many
moving objects, is producing a number of segments equal
to the specified K. Besides, we are not dealing with in-
stance segmentation, but with motion segmentation into lay-
ers. Accordingly, objects with the same motion are prone
to belong to the same mask (layer), but the decomposition
into connected segments could be an easy postprocessing.
On the other hand, our method manages to separate objects
with different motions, e.g., two cars or two animals in Fig.3
of the main paper. In addition, results (with K = 4) on the
”goats1” video are reported in Fig.6.

4. Repeatability
In order to evaluate the reliability of our method, we re-

peated five times the training of our model with five differ-
ent initialisations and performed the abovementioned eval-
uation pipeline.

Experiment DAVIS Val SegTrackV2 FBMS Davis 2017
1 73.2 55.0 59.4 42.0
2 73.9 57.6 59.0 39.0
3 72.6 55.1 59.5 40.8
4 73.9 56.5 60.5 38.8
5 72.7 55.2 59.1 41.0
Average 73.3 55.9 59.5 40.3

Table 4. Results (J&F for Davis2017-motion and Jaccard index
J for the three others) of five experiments, involving different ini-
tialisations of the network, on the four datasets. Reported results
in the main paper correspond to experiment 1.

We can observe that the results collected in Table 4 are
globally stable, whereas the process described above (seg-
ment linkage and segment selection) could generate vari-
ability.

5. Latent motion representation
We give a few highlights on the latent motion repre-

sentation issued from the trained network as mentioned in
the main paper (Section 3.4). We carried out a prelim-
inary experiment directly based on the normalized latent
vectors of all the sites of a subsequence. The latent vec-
tors are of dimension 32. We applied a PCA procedure to
all the latent vectors over the whole subsequence of length
T and taking into account the triplets at each time instant.
These latent vectors are stacked as an array of dimensions
(3×H ×W ×T, 32), where H and W are respectively the
height and the width of each frame of the subsequence.

Then, we compute the softmax of the projections onto
the three first components of the PCA output. Interest-
ingly, after thresholding the softmax values (threshold value
of 0.7), we observe that the resulting map is likely to pro-
vide a binary segment close to the ground truth of the pri-
mary moving object, as illustrated in Fig.7. It shows that

our latent motion representation is not only informative in
its own, but more importantly, is coherent over the subse-
quence since the PCA is computed once over the subse-
quence. In future work, we will investigate further this pos-
sibility to provide a binary segmentation directly oriented to
the VOS evaluation, when our network is trained for multi-
ple motion segmentation with K masks.

Figure 7. Illustration of the principal component analysis of the
latent motion representation. Two examples from DAVIS2016:
blackswan and camel. For each example, the first three rows are
the projection of the latent vectors on the three first principal com-
ponents. The fourth row is the binary segmentation obtained by
thresholding the projection on the first component.

6. Detailed results per videos of the datasets

Hereafter, we report detailed results through tables col-
lecting the evaluation scores obtained by our method for
every video of the four datasets, DAVIS2016, SegTrackV2,
FBMS59, and DAVIS2017-motion. Let us recall that the of-
ficial evaluation algorithm is not the same for DAVIS2016
and DAVIS2017. The evaluation is done in one go on the
whole video for DAVIS2017, while it is achieved frame by
frame of the video for DAVIS2016.



6.1. DAVIS2016

Video J (M) J (O) J (D) F (M) F (O) F (D)
blackswan 0.584 0.833 -0.11 0.594 0.875 -0.072
bmx-trees 0.597 0.756 0.198 0.798 0.949 0.095
breakdance 0.738 0.976 0.004 0.738 0.988 -0.007
camel 0.871 1 0.12 0.859 1 0.128
car-roundabout 0.918 1 -0.026 0.828 1 -0.068
car-shadow 0.897 1 0.019 0.846 1 -0.011
cows 0.873 1 0.031 0.804 1 0.022
dance-twirl 0.821 1 -0.071 0.853 1 -0.022
dog 0.812 1 -0.044 0.709 0.931 -0.024
drift-chicane 0.664 0.8 -0.221 0.754 0.84 -0.069
drift-straight 0.861 1 0.046 0.786 0.938 0.245
goat 0.298 0 0.125 0.299 0.023 0.037
horsejump-high 0.821 1 0.097 0.87 1 0.044
kite-surf 0.424 0.354 0.249 0.41 0.208 0.087
libby 0.734 0.979 0.117 0.846 1 -0.002
motocross-jump 0.61 0.553 0.182 0.377 0.474 0.198
paragliding-launch 0.624 0.667 0.313 0.314 0.167 0.375
parkour 0.735 0.959 0.069 0.777 1 0.15
scooter-black 0.861 1 -0.023 0.739 1 0.106
soapbox 0.889 1 0.03 0.859 1 0.021
Average 0.732 0.844 0.055 0.703 0.82 0.062

Table 5. Results given for every video of DAVIS2016 dataset. Re-
ported scores per video are the average Jaccard score over frames
in the video. The very last row is the average over videos scores.
J is the Jaccard index and F is the Countour Accuracy. The Mean
(M ) is the average of the scores, the Recall (O) is the fraction of
frames per video with a score higher than 0.5, and the Decay (D)
is the degradation of the score over time in the video.

6.2. SegTrackV2

Video Jacc (J )
Bird of paradise 51.5
birdfall 38.1
bmx 76.9
cheetah 44.1
drift 33.0
frog 78.2
girl 59.8
hummingbird 68.7
monkey 53.9
monkeydog 16.6
parachute 92.9
penguin 39.4
soldier 64.0
worm 39.3
Frames. Avg 55.0

Table 6. Results given for every video of SegTrackV2 dataset.
Each reported score is the average Jaccard score over annotated
frames in the video. The very last row is the average over all the
frames and over all the videos.

6.3. FBMS59

Video Jacc (J )
camel01 27.8
cars1 88.1
cars10 54.1
cars4 83.6
cars5 83.7
cats01 71.1
cats03 79.9
cats06 38.9
dogs01 73.1
dogs02 66.1
farm01 79.1
giraffes01 36.2
goats01 45.5
horses02 65.3
horses04 72.4
horses05 43.9
lion01 50.7
marple12 61.3
marple2 64.3
marple4 77.8
marple6 51.0
marple7 58.0
marple9 66.8
people03 52.8
people1 80.1
people2 87.3
rabbits02 49.8
rabbits03 41.3
rabbits04 50.2
tennis 72.6
Frames. Avg. 59.4

Table 7. Results given for every video of FBMS59 dataset. Each
reported score is the average Jaccard score over annotated frames
in the video. The very last row is the average over all the annotated
frames and over all the videos.



6.4. DAVIS2017-motion
Sequence J-Mean F-Mean
bike-packing 1 0.072 0.370
bike-packing 2 0.276 0.393
blackswan 1 0.577 0.593
bmx-trees 1 0.520 0.766
breakdance 1 0.365 0.558
camel 1 0.716 0.683
car-roundabout 1 0.900 0.814
car-shadow 1 0.870 0.804
cows 1 0.778 0.675
dance-twirl 1 0.441 0.641
dog 1 0.481 0.456
dogs-jump 1 0.433 0.506
dogs-jump 2 0.018 0.174
dogs-jump 3 0.190 0.251
drift-chicane 1 0.381 0.562
drift-straight 1 0.811 0.739
goat 1 0.275 0.303
gold-fish 1 0.175 0.270
gold-fish 2 0.027 0.325
gold-fish 3 0.168 0.209
gold-fish 4 0.000 0.000
gold-fish 5 0.000 0.000
horsejump-high 1 0.562 0.783
india 1 0.057 0.066
india 2 0.047 0.110
india 3 0.143 0.186
judo 1 0.247 0.357
judo 2 0.417 0.522
kite-surf 1 0.422 0.418
lab-coat 1 0.337 0.313
libby 1 0.730 0.847
loading 1 0.166 0.226
loading 2 0.068 0.210
loading 3 0.407 0.416
mbike-trick 1 0.644 0.683
motocross-jump 1 0.509 0.481
paragliding-launch 1 0.339 0.237
parkour 1 0.682 0.753
pigs 1 0.253 0.394
pigs 2 0.019 0.313
pigs 3 0.369 0.432
scooter-black 1 0.856 0.750
shooting 1 0.575 0.500
soapbox 1 0.726 0.779

J&FMean JMean JRecall JDecay FMean FRecall FDecay
0.420 0.388 0.365 0.006 0.452 0.454 0.039

Table 8. Results given for every video of DAVIS2017-motion
dataset. The very last row is the average score over all the videos
for the different criteria.
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