Supplement to FedSeg: Class-Heterogeneous Federated Learning for Semantic Segmentation

A. Implementation Details

We use BiSeNetv2 [7] as the segmentation model and a 2-layer MLP as the projection head to extract pixel embeddings. The SGD optimizer with an initial learning rate of 0.05 was used. SGD weight decay was set to 5e-4, and batch size was set to 8. The training images are augmented by random scaling, random flipping and random cropping. The random scaling factor is [0.5, 1.5] and the cropping size is 1024×512, 512×512, 480×480 for Cityscapes, CamVID, PascalVOC/ADE20k, respectively. The temperature τ of the contrastive loss is 0.07. λ in Equation 9 is set to 1 for Cityscapes, CamVID and ADE20k, while 0.1 for PascalVOC. For each subset of the four datasets, we further split it into several clients. The total number of clients for Cityscapes, CamVID, PascalVOC and ADE20k is 152, 22, 60 and 450, respectively. In each communication round 5 clients are randomly selected. The model is trained for 1,500, 1,200, 800 communication rounds for Cityscapes, PascalVOC and CamVID/ADE20k, respectively, with 2 local epochs in each round. All the comparable methods (FedAvg [6], FedProx [4], FedDyn [1] and MOON [5]) use the same training protocols for fairness.

B. Effect of the Number of Negative Pairs

For pixel-level contrastive learning, the negative samples are pixel embeddings of other classes. Since the pixel embeddings of the same class in one image contain similar information, we randomly sample N pixel embeddings for the local-to-global pixel contrastive learning. Fig. 1 shows the mIoU performance on Cityscapes [3] non-IID$_1$ and non-IID$_2$. N is set to 1,024, 2,048, 4,096 and 8,192. For higher heterogeneous data (non-IID$_2$), more sampled pixels as negative pairs achieve better performance. On Cityscapes [3] (non-IID$_2$), the number of negative pairs is not critical to affect the mIoU performance.

C. Effect of the Projection Head

We use a 2-layer projection head to map the pixel representations. Here we compare our model with and without the extra project head to show the effect of the projection head. We conduct experiments on Cityscapes [3] (non-IID$_1$ and non-IID$_2$) and CamVID [2] (non-IID$_1$ and non-IID$_2$). Table 1 shows that adding the projection head improves the segmentation performance by about +4%.

D. Effect of λ

We evaluate FedSeg with different λ and the mIoU scores are shown in Fig. 2 on Cityscapes [3] (non-IID$_1$ and non-IID$_2$).
Table 2. The effectiveness of our method on different semantic segmentation models.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>FedAvg + L_b</th>
<th>FedDyn + $L_b + L_c$</th>
<th>FedAvg + L_b</th>
<th>FedDyn + $L_b + L_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSPNet [8] Cityscapes</td>
<td>32.3</td>
<td>57.4</td>
<td>60.2</td>
<td>61.0</td>
</tr>
<tr>
<td>CamVid</td>
<td>41.0</td>
<td>61.4</td>
<td>63.5</td>
<td>66.7</td>
</tr>
<tr>
<td>BiseNetv2 [7] Cityscapes</td>
<td>10.4</td>
<td>45.0</td>
<td>50.2</td>
<td>52.1</td>
</tr>
<tr>
<td>CamVid</td>
<td>19.0</td>
<td>58.3</td>
<td>63.5</td>
<td>64.6</td>
</tr>
</tbody>
</table>

Table 3. Effectiveness on different federated learning methods.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>FedProx</th>
<th>FedProx+Ours</th>
<th>FedDyn</th>
<th>FedDyn+Ours</th>
<th>MOON</th>
<th>MOON+Ours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cityscapes</td>
<td>44.85</td>
<td>50.18</td>
<td>45.19</td>
<td>49.98</td>
<td>45.84</td>
<td>49.55</td>
</tr>
<tr>
<td>CamVid</td>
<td>58.29</td>
<td>62.56</td>
<td>59.44</td>
<td>61.22</td>
<td>58.90</td>
<td>61.38</td>
</tr>
</tbody>
</table>

and non-IID data. λ is set to 0.1, 0.5, 1, 2, 5. When λ is small ($\lambda = 0.1$) the performance of FedSeg is similar to FedAvg [6] since the impact of the pixel contrastive learning is small. Too large λ also drops the segmentation performance. $\lambda = 1$ is a reasonable choice, where FedSeg achieves at least 2.5% higher mIoU than FedAvg.

E. Effectiveness on Different Semantic Segmentation Models

To show the generalization of our method, we applied our proposed losses on another semantic segmentation model, PSPNet [8]. Results in Table. 2 show that using different segmentation models, BiseNet [7] and PSPNet [8], adding our losses (L_{backce}, L_{con}) consistently improves mIoU performance, illustrating the generalization of our method. L_b and L_c in Table. 2 indicate L_{backce} and L_{con}, respectively.

F. Effectiveness on Different Federated Learning Methods

We added more experiments to apply our proposed losses to FedProx [4], FedDyn [1] and MOON [5], as shown in Table. 3. Results show that adding our FedSeg to these federated learning methods consistently improves the performance, illustrating the generalization of our method.

G. Details of the Gradient Analysis for L_{backce}

The purpose of L_{backce} is correcting the gradients for decentralized non-IID FL to make it similar to the centralized training. For centralized training the gradient directions of the logit z_c for class c contain positives and negatives corresponding to the label y_j of class c or not. For decentralized FL, suppose the annotated data of Client i only contains class l. For class $c \not\in C_i$, the optimization with respect to z_c of standard CE is only the positive direction, i.e., $\frac{\partial L_{\text{ce}}}{\partial z_c} = p_c > 0$. Thus we correct the optimization direction by L_{backce}. For

$$L_{\text{backce}} = -\log \sum_{k \neq l} e^{z_k} / \sum_{k=1}^{K} e^{z_k},$$

and the gradient of L_{backce} with respect to z_c is

$$\frac{\partial L_{\text{backce}}}{\partial z_c} = \frac{\sum_{k=1}^{K} e^{z_k} \cdot e^{-z_c} \cdot \sum_{k=1}^{K} e^{z_k} - \sum_{k=1}^{K} e^{z_k} \cdot \sum_{k \neq l} e^{z_k} \cdot e^{-z_c} }{(\sum_{k=1}^{K} e^{z_k})^2}$$

$$= -\frac{e^{z_c} \cdot \left(\sum_{k=1}^{K} e^{z_k} - \sum_{k \neq l} e^{z_k} \right) \cdot \sum_{k \neq l} e^{z_k} \cdot e^{-z_c} }{\sum_{k=1}^{K} e^{z_k} \cdot \sum_{k \neq l} e^{z_k}}$$

$$= -\frac{e^{z_c} \cdot e^{-z_c} \cdot \sum_{k \neq l} e^{z_k} \cdot e^{-z_c} }{\sum_{k \neq l} e^{z_k}} \approx -p_c \cdot p_l,$$
References

