
Supplement to FedSeg: Class-Heterogeneous Federated Learning for Semantic
Segmentation

A. Implementation Details

We use BiSeNetv2 [7] as the segmentation model and
a 2-layer MLP as the projection head to extract pixel em-
beddings. The SGD optimizer with an initial learning rate
of 0.05 was used. SGD weight decay was set to 5e-4, and
batch size was set to 8. The training images are augmented
by random scaling, random flipping and random cropping.
The random scaling factor is [0.5, 1.5] and the cropping
size is 1024 × 512, 512 × 512, 480 × 480 for Cityscapes,
CamVID, PascalVOC/ADE20k, respectively. The tempera-
ture τ of the contrastive loss is 0.07. λ in Equation 9 is set
to 1 for Cityscapes, CamVID and ADE20k, while 0.1 for
PascalVOC. For each subset of the four datasets, we fur-
ther split it into several clients. The total number of clients
for Cityscapes, CamVID, PascalVOC and ADE20k is 152,
22, 60 and 450, respectively. In each communication round
5 clients are randomly selected. The model is trained for
1,500, 1,200, 800 communication rounds for Cityscapes,
PascalVOC and CamVID/ADE20k, respectively, with 2 lo-
cal epochs in each round. All the comparable methods (Fe-
dAvg [6], FedProx [4], FedDyn [1] and MOON [5]) use the
same training protocals for fairness.
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Figure 1. Effect of the number of negative pairs on Cityscapes.

Table 1. Effect of the projection head on mIoU score.

Method Cityscapes CamVID
non-IID1 non-IID2 non-IID1 non-IID2

w/ proj head 45.74% 46.12% 59.31% 60.24%
w/o proj head 50.24% 52.18% 63.50% 64.67%

Figure 2. Effect of λ.

B. Effect of the Number of Negative Pairs
For pixel-level contrastive learning, the negative sam-

ples are pixel embeddings of other classes. Since the pixel
embeddings of the same class in one image contain simi-
lar information, we randomly sample N pixel embeddings
for the local-to-global pixel contrastive learning. Fig. 1
shows the mIoU performance on Cityscapes [3] non-IID1

and non-IID2. N is set to 1,024, 2,048, 4,096 and 8,192.
For higher heterogeneous data (non-IID1), more sampled
pixels as negative pairs achieve better performance. On
Cityscapes [3] (non-IID2), the number of negative pairs is
not critical to affect the mIoU performance.

C. Effect of the Projection Head
We use a 2-layer projection head to map the pixel repre-

sentations. Here we compare our model with and without
the extra project head to show the effect of the projection
head. We conduct experiments on Cityscapes [3] (non-IID1

and non-IID2) and CamVID [2] (non-IID1 and non-IID2).
Table. 1 shows that adding the projection head improves the
segmentation performance by about +4%.

D. Effect of λ
We evaluate FedSeg with different λ and the mIoU

scores are shown in Fig. 2 on Cityscapes [3] (non-IID1



Table 2. The effectiveness of our method on different semantic segmentation models.

Dataset FedAvg +Lb +Lb + Lc FedAvg +Lb +Lb + Lc

PSPNet [8] Cityscapes1 32.3 57.4 60.2 Cityscapes2 49.5 59.5 61.0
CamVid1 41.0 61.4 63.5 CamVid2 54.6 65.0 66.7

BiseNetv2 [7] Cityscapes1 10.4 45.0 50.2 Cityscapes2 28.6 47.6 52.1
CamVid1 19.0 58.3 63.5 CamVid2 32.1 62.1 64.6

Table 3. Effectiveness on different federated learning methods.

FedProx FedProx+Ours FedDyn FedDyn+Ours MOON MOON+Ours
Cityscapes1 44.85 50.18 45.19 49.98 45.84 49.55

CamVid1 58.29 62.56 59.44 61.22 58.90 61.38

and non-IID2). λ is set to 0.1, 0.5, 1, 2, 5. When λ is
small (λ = 0.1) the performance of FedSeg is similar to
FedAvg [6] since the impact of the pixel contrastive learn-
ing is small. Too large λ also drops the segmentation per-
formance. λ = 1 is a reasonable choice, where FedSeg
achieves at least 2.5% higher mIoU than FedAvg.

E. Effectiveness on Different Semantic Seg-
mentation Models

To show the generalization of our method, we ap-
plied our proposed losses on another semantic segmenta-
tion model, PSPNet [8]. Results in Table. 2 show that us-
ing different segmentation models, BiseNet [7] and PSP-
Net [8], adding our losses (Lbackce , Lcon) consistently im-
proves mIoU performance, illustrating the generalization of
our method. Lb and Lc in Table. 2 indicate Lbackce and
Lcon, respectively.

F. Effectiveness on Different Federated Learn-
ing Methods

We added more experiments to apply our proposed
losses to FedProx [4], FedDyn [1] and MOON [5], as shown
in Table. 3. Results show that adding our FedSeg to these
federated learning methods consistently improves the per-
formance, illustrating the generalization of our method.

G. Details of the Gradient Analysis for Lbackce

The purpose of Lbackce is correcting the gradients for de-
centralized non-IID FL to make it similar to the centralized
training. For centralized training the gradient directions of
the logit zc for class c contain positives and negatives cor-
responding to the label yj is c or not. For decentralized FL,
suppose the annotated data of Client i only contains class l.
For class c ̸∈ Ci, the optimization with respect to zc of stan-
dard CE is only the positive direction, i.e., ∂Lce

∂zc
= pc > 0.

Thus we correct the optimization direction by Lbackce. For

the background pixels where yj ̸= l,
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where pc and pl denote the predicted probabilities of class
c and l, respectively. Lbackce provides a negative gradient
direction with respect to zc where yj ̸= l. The gradient is
larger if pc is larger, which means if the predicted probabil-
ity of class c is large, the gradient tends to make the model
recognize the pixel as class c. Since the local model is
started from the global model which can predict all classes,
pc can be seen as a pseudo label.
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