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Appendix A: More details on making our
WFLW-V dataset

In this section we detail the procedure used to collect,
label and curate the 1000 videos that make up the WFLW-V
dataset.

Step 1: Video search

We start by producing a list of 100 YouTube search
strings, that we think would be correlated with videos con-
ducive to landmark uncertainty. These search strings fall
within 7 categories: “Skin care & Makeup” (e.g. how to put
lipstick), “Hair & Beard care” (e.g. how to cut your own
hair), “Singing & Podcasts” (e.g. how to setup your mic),
“Brass instruments” (e.g. learn to play the French horn”),
“Eating” (e.g. how to eat fast), “Smoking” (e.g. how to
smoke the cigar), and “Miscellaneous” (e.g. how to brush
your teeth”). Each English search string is translated to 10
languages, to produce more diverse videos: French, Ger-
man, Spanish, Italian, Portuguese, Catalan, Czech, Danish,
Estonian, Dutch.

We use YouTube filters to search for videos less than 4
minutes long, and with a CC BY licence. This licence is
the most permissive creator licence. It allows reusers to dis-
tribute, remix, adapt the video, and even to use it for com-
mercial use. We only consider videos that have a frame rate
between 24 and 31 fps inclusive. This is mostly to exclude
all videos like kid cartoons that have very low fps. In total,
this step produces around 15, 000 videos.

Step 2: Video cleaning

Our task is now to find 5s of contiguous clean face for
each video. A clean face is a real human face, at least 20%
visible, from a single person, without video or camera filters
(e.g. face filters, jump cuts). We also limit the number of
videos that come from the same youtuber, so as not to lower

diversity. We use the most popular face detector, the Multi-
task Cascaded Convolutional Networks (MTCNN) [6] to
help with video cleaning. In total, this leaves around 2, 000
videos.

Step 3: Video annotation

We use an oracle made up of 45 pretrained models, in-
cluding 15 large Unets (larger than our LDEQ backbone),
15 HRNets-W48, and 15 HRFormer-B. We average the fi-
nal heatmap of each model to create a mean heatmap, from
which we extract our oracle predictions. We found that the
bounding box from the MTCNN model are jittery, which in
turns facilitates jitter and flicker for landmarks. To fix this
we bootstrap our oracle to the bounding box detection. This
is done by using the original MTCNN bounding box, find-
ing landmarks, defining a new bounding box based on the
smallest/largest landmark coordinates and a scaling margin
factor of 1.2, finding landmarks in this new bounding box,
and so on. This is repeated for 3 iterations, after which the
bounding box values have have converged. We use the land-
mark predictions on the final bounding box as our oracle
predictions.

As our oracle outputs the mean of an ensemble of M
independent models, the error on this mean is given by
σ/

√
M , where σ is the standard deviation of the M pre-

dictions. For M = 45 we measured this error to be ∼ 0.2%
of the mean for the hard subset of WFLW-V.

Step 4: Video verification

We verify each video frame by frame for issues. In
some cases, videos are discarded because the degree of un-
certainty or occlusion is too high that even a “human best
guess” wouldn’t be good. This includes videos with very
large poses as well. In other cases, particularly for hard
videos, some models in the ensemble are visibly mistaken.
These models are singled out and removed for problematic
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Figure 1. Examples of poorly labelled videos in the 300-VW dataset. We show three levels of labelling errors from top to bottom: medium,
bad, very bad. Our new WFLW-V dataset uses much stronger labellers and was checked frame by frame to avoid such errors.

frames. These cases are rare (∼ 25) but worth correcting
so we don’t bias the dataset by only including videos where
our oracle does best.

Step 5: Subset creation

Since we have access to all 45 model predictions in the
ensemble, it is easy to see the average variance of these
models for each video. This score correlates well with un-
certainty, and we use it to rank all videos from hard to easy.
We used the top 500 videos for WFLW-hard, and the bottom
500 for WFLW-easy.

Appendix B: Errors in 300-VW

The 300-VW dataset [4] was labelled using the now ob-
solete models from [2] and [5]. This results in several la-
belling errors (Fig. 1) that have gone unnoticed. Errors in
the ground truth of datasets lead to misleading insights and
models that generalize poorly to real-world settings.

We also note that many (perhaps all) of the videos in
300-VW do not have a creative commons licence, and so
the legality of their use for industrial research labs may be
more ambiguous.

Appendix C: WFLW-V Results

We show the results of Figure 5 in tabular form in Tab. 1.
We compare our RwR scheme to the exponential moving
average (ema), and show that contrary to ema, our method
can improve temporal coherence without lowering accu-
racy. We tried the following ema weights: [0.005, 0.01,
0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
When considering all baselines at once, we found that a
weight 0.15 struck the best balance between lowering NMF
without increasing NME too much. This was also better
than the grid searched Savitzky-Golay filter [3] and One
Euro filter [1]. The only exception was the HIH model
which is both very jittery and flickery, and for which we
used an ema weight of 0.3.

Finally, we found that more augmentations can help per-
formance on WFLW-V while reducing performance on the
WFLW test set. This is likely because the WFLW-V dataset
is more diverse than the WFLW test set, and unecessary
augmentations on WFLW can reduce performance. We
therefore retrained LDEQ with more augmentations to get
the best performance on WFLW-V.



Method WFLW-V hard WFLW-V easy WFLW-V FULL

NME NMF NME NMF NME NMF

HIH 3.93 423.11 2.48 294.94 3.20 359.03
+ ema 4.15 313.07 2.54 208.60 3.34 260.84

StackedHourglass 3.93 255.74 2.33 125.91 3.13 190.82
+ ema 3.99 231.52 2.37 119.35 3.18 175.43

HRFormer-S 3.92 289.50 2.29 150.91 3.11 220.21
+ ema 3.98 255.85 2.33 136.37 3.15 196.11

HRNet-W18 3.61 236.96 2.16 127.72 2.89 182.34
+ ema 3.68 215.26 2.20 119.13 2.94 167.20
SDFL 3.13 207.68 1.83 115.22 2.48 161.45
+ ema 3.21 192.77 1.87 108.35 2.54 150.56
Awing 2.90 277.86 1.68 171.48 2.29 224.67
+ ema 2.96 242.95 1.70 146.71 2.33 194.83

HRNet-W32 2.60 203.15 1.45 105.35 2.03 154.25
+ ema 2.71 186.69 1.51 99.62 2.11 143.15
Unet 2.53 189.28 1.38 94.35 1.95 141.81

+ ema 2.65 175.76 1.45 91.58 2.05 133.67
SLPT 2.42 216.56 1.32 105.93 1.87 161.25
+ ema 2.52 195.35 1.39 98.79 1.96 147.07
LDEQ 2.31 197.16 1.24 84.03 1.77 140.59
+ RwR 2.30 172.95 1.24 82.74 1.77 127.85

Table 1. NME and NMF on the WFLW-V dataset, comparing the
effect of an exponential moving average smoothing (ema) with our
recurrence without recurrence scheme.
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