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1. Supplementary Material
1.1. Qualitative results

We provide an extensive qualitative evaluation of both
the ResNet and MobileNet variants. Firstly, we explore the
performance of MobileVOS on an out-of-domain video and
compare its predictions to XMem, whereby we observe that,
although some segmentation errors occur, they are far less
significant. Secondly, we provide real-time predictions of
a single object, given on a mobile device. We expose this
object to severe occlusions to highlight the robustness of
our models in the wild. Finally, we show the generality of
SVOS in its application with video inpainting.

Out-of-domain The mask predictions given in figure 1
demonstrate the robustness of MobileVOS to domain shifts,
unseen classes, and camera shot changes. We compare these
predictions to those given by XMem and observe 3 distinct
failure modes that are unique to each of these model, where
these failure modes are tied to the underlying architectures
and memory models used. Although some segmentation
errors occur only on MobileVOS, and not XMem, we ex-
pect that this is simply a trade-off imposed by the smaller
network capacity, and the other types of failure modes (ob-
served only in XMem) are much more detrimental.

1. Similar features The second frame shows some poor
segmentation on the wrong object, which we attribute
to the smaller network capacity that is unable to learn
sufficiently discriminative features. This is not ob-
served in XMem due to the much larger backbones.

2. Shot changes XMem can fail to segment the correct
objects under camera shot changes since the model is
matching features to a long sequence of intermediate
frames which do not include the main object.

3. Drift After XMem makes this first mistake, the model
then begins to drift. MobileVOS does not suffer from
this problem due to only storing the first and most
recent frames/masks in memory. This drift leads to
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XMem poorly segmenting later frames in the video,
including segmenting the wrong object.

We have included the full length videos alongside
this supplementary document. This video example high-
lights limitations of the YouTube and DAVIS evaluation
datasets, which do not consider domain shifts or camera
shot changes.

Poly Loss DAVIS 2016 DAVIS 2017

with 89.8 80.1
without 89.8 79.9

Table 1. Evaluating the impact of the poly loss on both the DAVIS
2016 and DAVIS 2017 datasets, where ϵ “ 1 and the query en-
coder uses a MobileNetV2 backbone wo/ ASPP.

On-device Long term occlusion We demonstrate the ro-
bustness of our most efficient MobileVOS model (Mo-
bileNet V2 wo/ ASPP) under severe occlusion in real-time
and on a mobile device. The results can be seen in the at-
tached OnDeviceOcclusion.mp4 video and show almost no
segmentation errors.

Image inpainting A practical use case of SVOS is video
inpainting. This task often requires per-frame masks, which
indicate the areas to be inpainted. We use the MobileVOS
ResNet18 variant to generate these per-frame masks, and
then perform inpainting using FuseFormer [3]. We use the
original operating resolution of FuseFormer (240p), where
the segmentation masks are downsized to this resolution ac-
cordingly. In videos with multiple objects, we merge the
masks into a single binary mask and use this as the inpaint-
ing input. We show an example of this application on a
video provided in the YouTube validation split (see the at-
tached video or figure 3). Despite significant object move-
ment, our model is still able to provide highly accurate per-
frame masks that lead to visually appealing inpainting re-
sults.
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First frame 1. Similar features 2. Shot changes 3. Drift

Figure 1. Comparison to XMem on a long out-of-domain single object segmentation task. Top row are the predictions by XMem, while
the bottom row is from the ResNet MobileVOS. We categorise and highlight 3 distinct segmentation errors that can occur. The colour shift
is just an artifact of how the masks are overlayed on the frames and is unrelated to the segmentation.
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Figure 2. Model soups can improve the accuracy on both the
DAVIS and YouTube datasets, without any additional inference
costs.

1.2. Poly loss ablation

Table 1 shows the J&F results on both the DAVIS 2016
and DAVIS 2017 validation splits with and without using
the additional poly loss component. In these experiments,
we train the MobileNet (wo/ ASPP) backbone with no dis-
tillation or contrastive learning and observe that the poly
loss can be safely removed without impacting the models
performance.

1.3. Model soups

We use models soups [9] as an alternative to multi-scale
inference, which is typically adopted in the SVOS litera-
ture [1]. Unlike model soups, multi-scale inference can
incur significant additional inference costs due to multiple
forward passes at different resolutions. Figure 2 shows the
accuracy of a few checkpoints with varying values of ω and
at different iterations of training. By simply averaging the
weights of all of these models, we achieve a significant in-
crease in the DAVIS 2017 validation accuracy. However, by
adopting a greedy selection process, we are able to achieve

a much more significant increase. One noticeable observa-
tion from this process is that no additional data is needed
for selecting the model to be included in the soup - they are
simply conditionally added based on the observed training
accuracy.
1.4. Background - Kernel Perspective

Rényi’s α-entropy [5] of order α P p0, 1q Y p1,8q pro-
vides a natural extension of Shannon’s entropy. Consider a
random variable X with probability density function (PDF)
fpxq in a finite set χ, the α-entropy HαpXq is defined as:

Hαpfq “
1

1 ´ α
log2

ż

χ

fαpxqdx (1)

Where the limit as α Ñ 1 is the well-known Shannon en-
tropy. [7,8] propose a set of quantities that closely resemble
Rényi’s entropy and omit the need for evaluating the un-
derlying probability distributions. These information quan-
tities are estimated directly from the data and are based
on the theory of infinitely divisible matrices. Their usage
leverages the representational power of reproducing kernel
Hilbert spaces (RKHS), which is a concept that has been
widely studied and adopted in classical machine learning.
These estimators have been successfully applied in the con-
text of knowledge distillation for image classification, read-
ing comprehension, and binary network classification [4].

For completeness, we now provide definitions of these
entropy-based quantities and their connections with posi-
tive semidefinite matrices. This idea then leads to a multi-
variate extension using Hadamard products, from which
conditional and mutual information can be defined. For
brevity, we omit the proofs and connections with Rényi’s
axioms, which can be found in [7, 8].

Definition 1: Let X “ txp1q, . . . xpnqu be a set of n data
points of dimension d and κ : XˆX Ñ IR be a real-valued
positive definite kernel. The Gram matrix K is obtained



Figure 3. Using MobileVOS in conjunction with video in-painting to remove selecting objects.

from evaluating κ on all pairs of examples, that is Kij “

κpxi, xjq. The matrix-based analogue to Rényi’s α-entropy
for a normalized positive definite (NPD) matrix A such that
trpAq “ 1, can be given by the following functional:

SαpAq “
1

1 ´ α
log2ptrpAαqq (2)

“
1

1 ´ α
log2

«

n
ÿ

i“1

λipA
αq

ff

(3)

where A is the kernel matrix K normalised to have a trace
of 1 and λipAq denotes its i-th eigenvalue. This estimator
can be seen as a statistic on the space computed by the ker-
nel κ, while also satisfying useful properties attributed to
entropy.

Definition 2: Let X and Y be two sets of data points.
After computing the corresponding Gram matrices A and
B, the joint entropy is then given by:

SαpA,Bq “ Sα

ˆ

A ˝ B

trpA ˝ Bq

˙

(4)

where ˝ denotes the Hadamard product between two matri-
ces. Using these two definitions, the notion of conditional
entropy and mutual information can be derived. We focus
on the mutual information, which is given by:

IαpA;Bq “ SαpAq ` SαpBq ´ SαpA,Bq (5)

1.5. Decomposing the representation loss

In this section, we provide an intricate connection be-
tween the proposed loss, mutual information, and con-
trastive learning. By bridging between these two training
regimes, we find that models can benefit from minimising a
linear weighting of these two objectives. We hope that this
abstract lense can provide additional insights into the train-
ing dynamics for learning, and specifically in the context of
very practical dense prediction tasks.

Relating Lrepr to mutual information More formally, in
the case where ω “ 1, we show that minimising Lrepr is
equivalent to maximising the pixel-wise mutual information
between the student and teacher representations.

Given A is a real symmetric matrix, then ∥A∥2F “

trpAAT q “
řn

i“1 λipA
2q. This follows from the defini-

tion of the Frobenius norm of a matrix, ∥A∥2F “
ř

ij A
2
ij .

The trace term can be expanded as follows trpAAT q “
ř

i

`

AAT
˘

ii
“

ř

i

ř

j AijAji. Since A is symmetric,
Aij “ Aji and thus trpAAT q “

ř

i

ř

j A
2
ij “ ∥A∥2F .

Finally, the equality between the trace of a matrix and the
sum of eigenvalues is a known relation in linear algebra.

The representations, ZS and ZT , are L2 normalised and
thus the correlation matrices C will have 1s along their lead-
ing diagonal. These matrices are real and symmetric, which
allows use to use the relation derived above.

The representation loss Lrepr can be decomposed
into the difference of two information-theoretic quantities,
namely the entropy and joint entropy.

Lrepr “
1

| Cs |

ˆ

log2 ∥Cs∥2 ´ log2 ∥Cs d Ct∥2
˙

(6)

“
1

| Cs |

ˆ

´S2pZSq ` S2pZS ;ZT q

˙

(7)

Equation 7 follows from 6 using the definitions for the
entropy estimators in equation 3 and 4 with α “ 2. Max-
imising the mutual information can be given as follows:

Lmi “ ´I2pZS ;ZT q (8)
“�����

´S2pZT q ´ S2pZSq ` S2pZS ;ZT q (9)

Where the first entropy term can be omitted since no gra-
dients flow through the teachers representation. From an
optimisation perspective, these two losses are then equiv-
alent. The only distinction is in the pixel-wise sampling
strategy, where we opt to select only the boundary pixels,
which leads to much faster model convergence.

Relating Lrepr to contrastive learning In the case where
ω “ 0, minimising Lrepr is a pixel-wise contrastive objec-
tive.

The loss can be deconstructed into the sum of positive
and negative pixel-wise pairings. In the case where ω “ 0,
Cty “ Cy “ YYT .



Cy “
`

YYT
˘

ij
“

#

1 j P Pi

0 j P Ni

(10)

where Pi, Ni denote the set of positive and negative in-
dices for the i-th sample. The loss is then decomposed as
follows.

Lrepr “
1

| Cs |

ˆ

log2 ∥Cs∥2 ´ log2 ∥Cs d Cy∥2
˙

(11)

“
1

| Cs |
log2

ÿ

i

˜

ÿ

jPPi

pCsq
2
ij `

ÿ

jPNi

pCsq
2
ij

¸

(12)

´
1

| Cs |
log2

ÿ

i

ÿ

jPPi

pCsq
2
ij

This loss can be further simplified by the log identity
logpaq ´ logpbq “ logpa{bq.

Lrepr “
1

| Cs |
log2

ř

i

´

ř

jPPi
pCsq

2
ij `

ř

jPNi
pCsq

2
ij

¯

ř

i

ř

jPPi
pCsq

2
ij

(13)

“ ´
1

| Cs |
log2

ř

i

ř

jPPi
pCsq

2
ij

ř

i

´

ř

jPPi
pCsq

2
ij `

ř

jPNi
pCsq

2
ij

¯

(14)

“ ´
1

| Cs |
log2

ÿ

i

ř

jPPi
pCsq

2
ij

ř

k pCsq
2
ik

(15)

The original supervised contrastive loss [2] is given as
follows.

LSupCon “ ´
ÿ

i

log
1

| Pi |

ř

jPPi
simpzi, zjq

ř

k simpzi, zjq
(16)

where i, k P t1 . . . |Cs|u index the set of all sampled pix-
els. In the case where we define simpzi, zjq to be the co-
sine similarity between the two vectors zi and zj , these two
losses are very similar. The only distinction between the
two lies in switching the position of the normalisation and
summation with respect to the logarithm. It is also worth
noting that we use base 2 for the logarithm, as is convention
in the information theory literature. In essence, the numer-
ator in this loss pushes positive terms together, while the
denominator repels negative pairs.

1.6. Comparison with other distillation methods

We trained the ResNet model with two different distilla-
tion losses and observed a significant drop in attainable per-
formance on the DAVIS16 benchmark, which can be seen in
figure 4. Our method outperforms others by over 1 J&F .
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Figure 4. Comparing the performance of the ResNet model trained
with hints (FitNets) [6] and Attention Transfer [10].

1.7. Loss ablation with the MobileNet backbone

Additional experiments demonstrating the effectiveness
of our proposed loss on the MobileNet architectures are
given in table 2, whereby we observe a consistent improve-
ment in J&F across both the DAVIS16 and DAVIS17
datasets with and without ASPP.

Model distillation DAVIS16 DAVIS17

wo/ ASPP ✗ 89.2 80.5
wo/ ASPP ✓ 90.1 81.8
w/ ASPP ✗ 89.6 81.6
w/ ASPP ✓ 90.5 82.2

Table 2. Evaluating the effectiveness of our proposed distillation
loss on the MobileNet backbone architecture.
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