
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
Supplementary Material

M. Jehanzeb Mirza1,2 Pol Jané Soneira3 Wei Lin1,4 Mateusz Kozinski1

Horst Possegger1 Horst Bischof1,2

1Institute for Computer Graphics and Vision, TU Graz, Austria.
2Christian Doppler Laboratory for Embedded Machine Learning.

3Institute of Control Systems, KIT, Germany.
4Christian Doppler Laboratory for Semantic 3D Computer Vision.

In the following, we present additional continuous online
adaptation scenarios in which we test ActMAD (Section 1),
provide all implementation details for baselines and our ex-
periments to support reproducibility (Section 2), present ad-
ditional ablation studies (Section 3), and more comparisons
and insights for our ActMAD (Section 4).

1. Continuous Online Adaptation
Our location-aware feature alignment is especially helpful

for the task of object detection. The fine-grained supervision
helps ActMAD to adapt to different weather scenarios in
a dynamic and efficient manner. Moreover, ActMAD also
shows promising results while adapting to different weather
scenarios in a continuous manner. In the main manuscript
(Figure 1), we show such a simulated continuous adaptation
scenario (Clear→Fog→Snow→Rain→Clear). We further
test ActMAD in similar scenarios where the weather condi-
tions are encountered in a different sequence. In Figure 1a
and 1b, we present results for adaptation with ActMAD in
two such scenarios.

The results show that ActMAD can achieve impres-
sive results in different scenarios and the sequence of
weather conditions which are encountered does not mat-
ter. This is close to the requirements in the real-world,
where different weather conditions can occur in any or-
der during driving. We also see from the results that Act-
MAD can even improve the performance of a KITTI [5]
pre-trained YOLOv3 [19] on the validation split from the
dataset (which represents the Clear weather condition). For
example, in Figure 1b, where order of the weather con-
ditions is Clear→Clear→Fog→Snow→Rain→Clear, Act-
MAD achieves 1.0% higher Mean Average Precision while
adapting from Clear→Clear at the beginning of the adap-
tation cycle. This is because even though the adaptation is
performed from Clear→Clear, the activation statistics could

be different between the training and inference, e.g., due
to slight change in the environmental conditions or scenery.
Our ActMAD helps to rectify this mismatch to obtain an
increase in performance.

2. Implementation Details
Hardware: All our experiments are performed on a single
NVIDIA® GeForce® RTX 3090 and a GPU server consisting
of four Quadro RTX 8000.

CIFAR-10/100C: We use an AugMix pre-trained [10]
Wide-Resnet-40 [30] for our main results on CIFAR-
10/100C. For experiments with ViT-B/16 [4] we finetune
the ViT backbone (pre-trained on ImageNet-21k) for 10000
iterations on the training sets of CIFAR-10/100 [15] with a
learning rate of 3e−2.

ImageNet-C: All ImageNet-C experiments use ImageNet
pre-trained models. For the main results with ResNet-18 [7]
we use the pre-trained weights from the PyTorch [18] model
zoo. For experiments with ResNet-50 using Group Normal-
ization [28] (Section 3.1), we use pre-trained weights from a
third-party open source repository1. For experiments with
a DeepAug [8] pre-trained ResNet-50 (Section 3.2), we use
the pre-trained weights from Robust Bench2. For experi-
ments on ImageNet-C with ViT-B/16 model (Section 3.4),
we use the pre-trained weights from the open source timm
library3.

KITTI: All KITTI [5] experiments start with a model pre-
trained on the original KITTI dataset. As it is collected

1github.com/ppwwyyxx/GroupNorm-reproduce, commit: 883f694
2robustbench.github.io/
3github.com/rwightman/pytorch-image-models, release: 0.6.11

1



0 60 120 180 240 300

Time (Seconds)

20

30

40

50

60

70

80

90

M
ea

n
A

ve
ra

ge
P

re
ci

si
on

(%
)

Clear → Fog

21.6% → 48.1%

Fog → Rain

77.6% → 81.7%

Rain → Snow

39.4% → 62.5%

Snow → Clear

87.6% → 90.6%

Continuous Online Adaptation (Clear→Fog→Rain→Snow→Clear)

Condition Change

Baseline Clear (90.7%)

Source

ActMAD

(a) Clear→Fog→Snow→Rain→Clear

0 60 120 180 240 300 360

Time (Seconds)

20

30

40

50

60

70

80

90

M
ea

n
A

ve
ra

ge
P

re
ci

si
on

(%
)

Clear → Clear

90.7% → 91.7%

Clear → Fog

21.2% → 48.0%

Fog → Snow

30.7% → 62.8%

Snow → Rain

78.4% → 81.7%

Rain → Clear

88.0% → 90.6%

Continuous Online Adaptation (Clear→Clear→Fog→Snow→Rain→Clear)

Condition Change

Baseline Clear (90.7%)

Source

ActMAD

(b) Clear→Clear→Fog→Snow→Rain→Clear

Figure 1. Mean Average Precision (mAP@50) for two simulated continuous online adaptation scenarios with different weather sequences.
Source refers to the model trained on clear weather condition and tested on the changing weather without adaptation.

Source
(BN)

ActMAD
(BN)

Source
(GN)

ActMAD
(GN)

45

65

85

T
op

-1
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)

82.4

56.7

79.8

58.1

Figure 2. Mean Top-1 Classification Error (%) over all corrup-
tions in ImageNet-C (Level 5) using a ResNet-50 with different
normalization layers. BN: Batch Normalization, GN: Group Nor-
malization. Source refer to results obtained without adaptation.

Batch size
125

Batch size
75

Batch size
25

Batch size
10

40

45

50

T
op

-1
C

la
ss

ifi
ca

ti
on

E
rr

or
(%

)
43.5

43.9 44.1

47.6

Figure 3. Mean Top-1 Classification Error (%) over all corruptions
in ImageNet-C (Level 5) while decreasing the batch size. The
backbone used is an AugMix [10] pre-trained ResNet-50. Here,
Source (without adaptation) Error is 61.1%.

mostly in clear (i.e. sunny) weather conditions, we refer to it
as KITTI-Clear. We adapt this model to degrading weather
conditions, i.e. fog [6], rain [6] and snow [9]. For KITTI-
Clear, we re-train an MS-COCO [13] pre-trained YOLOv3
in a supervised manner on the train split of the KITTI dataset.
The model is trained for 100 epochs with a batch size of 30,
while all the other training details are kept constant as in the
PyTorch implementation of YOLOv34.

Baselines: Since all the baselines used to compare our
results are primarily tested for object recognition on CIFAR-
10/100C [9] and ImageNet-C [9], we use their official open-
source codes and use all the hyper-parameters, which they
report in their paper.

For object detection experiments, only DUA [16] pro-
vides official results5. Therefore, we implement NORM [22]
for object detection using their official repository6. Since

4github.com/ultralytics/yolov3, commit: d353371
5https://github.com/jmiemirza/DUA, commit: d6e5398
6https://github.com/bethgelab/robustness, commit: aa0a679

NORM is a gradient-free approach, it does not rely on any
hyper-parameters. We use a batch size of 30 to obtain all the
results for NORM.

TTT [23] uses rotation prediction as an auxiliary task for
test-time training. TTT is also primarily tested for object
recognition by its authors. We implement TTT for object
detection for the purpose of comparison in our paper. We
use the same batch size (i.e. 30), as for ActMAD. For joint-
training with the auxiliary rotation prediction task we take
the output from the feature encoder of YOLOv3 and use a
single-layer linear classifier head to predict the rotation of
the input image. The hyperparameters used for the KITTI
pre-training (for ActMAD experiments) and joint-training
are kept the same. However, we find that training a net-
work jointly for the classification task of rotation prediction
and object detection requires special design choices. For
example, we use a loss scaling factor of 0.4 for the self-
supervised task during joint-training to make the network
converge. Similarly, the same loss scaling factor is used
during test-time training. The evaluation protocol is kept



Corruptions: Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

Level 4

Source 24.1 17.1 16.4 6.6 23.5 8.4 7.4 12.2 11.5 8.3 6.2 9.2 10.6 19.4 13.1 12.9
ActMAD 11.7 9.8 11.7 5.9 16.0 7.1 6.2 9.1 7.9 6.5 5.4 6.1 9.2 7.1 11.8 8.8 ± 7e− 3

Level 3

Source 20.4 14.6 9.7 5.4 12.9 8.6 6.5 9.9 11.4 6.3 5.5 7.2 7.4 9.6 12.1 9.8
ActMAD 10.5 8.8 8.7 5.3 10.6 7.2 5.9 8.0 7.9 5.9 5.1 5.6 6.9 6.1 10.9 7.6 ± 7e− 3

Level 2

Source 13.4 8.8 8.0 5.1 14.2 6.5 5.8 9.2 8.5 5.3 5.3 6.1 6.5 7.8 10.9 8.1
ActMAD 8.4 6.6 7.3 5.0 10.9 6.2 5.6 7.1 6.7 5.1 5.0 5.3 6.4 5.8 10.0 6.8 ± 8e− 3

Level 1

Source 8.7 6.5 6.2 4.9 14.1 5.5 5.9 6.4 6.5 4.9 5.0 5.0 6.9 5.8 8.7 6.7
ActMAD 6.4 5.7 6.0 4.9 10.3 5.5 5.6 5.9 5.6 4.8 4.9 4.9 6.8 5.3 7.8 6.0 ± 9e− 3

Table 1. Top-1 Classification Error (%) for all corruptions in CIFAR-10C (level 4 – 1), highest severity is reported in the main manuscript.
Lower is better. The results were obtained by adapting a WRN-40-2 backbone, trained on CIFAR-10, to CIFAR-10C. ActMAD results are
averaged over 10 runs, and we report the mean error and its standard deviation.

Corruptions: Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

Level 4

Source 60.7 51.6 47.9 27.1 54.4 30.3 28.9 37.4 39.0 35.4 27.2 35.9 34.4 39.0 40.1 39.3
ActMAD 38.0 34.9 35.3 26.1 41.1 28.0 27.1 32.8 30.8 31.0 24.7 26.6 31.9 28.4 37.2 31.6 ± 4e− 3

Level 3

Source 55.2 45.9 36.9 25.7 39.9 30.5 27.4 33.3 38.1 29.5 25.5 30.5 28.6 30.3 38.0 34.4
ActMAD 36.6 32.9 30.5 24.8 34.1 28.2 26.3 30.3 30.4 27.9 24.1 25.5 27.6 26.4 35.7 29.4 ± 3e− 3

Level 2

Source 44.6 34.5 30.7 24.3 41.5 27.7 26.2 32.7 31.8 26.8 24.4 27.5 27.9 28.0 36.5 31.0
ActMAD 32.4 28.5 27.4 24.0 33.7 26.5 25.4 28.9 28.0 25.4 23.7 24.8 27.6 26.1 34.4 27.8 ± 2e− 3

Level 1

Source 34.4 29.6 26.9 23.8 42.9 25.6 26.1 26.1 27.4 24.0 23.8 24.3 28.4 25.2 32.4 28.1
ActMAD 28.5 26.7 25.6 23.5 33.7 24.9 25.1 25.4 25.6 23.7 23.5 23.8 28.2 24.8 31.0 26.3 ± 2e− 3

Table 2. Top-1 Classification Error (%) for all corruptions in CIFAR-100C (level 4 – 1), highest severity is reported in the main manuscript.
Lower is better. The results were obtained by adapting a WRN-40-2 backbone, trained on CIFAR-100, to CIFAR-100C. ActMAD results
are averaged over 10 runs, and we report the mean error and its standard deviation.

consistent for all baselines and our method.

We also implemented TTT++ [14] on YOLOv3 in or-
der to use it as a baseline for object detection experiments.
We used the same prediction head, hyper-parameters and
the augmentations (for creating two augmented views for
SimCLR [2] training) used by the original TTT++ paper for
their experiments on CIFAR-10/100. We experimented with
several design choices for joint-training (object detection
and contrastive SimCLR task), each for a total of 500 epochs
on the KITTI train set, starting from the pre-trained weights
on MS-COCO. However, despite the best of our efforts we
could not make the joint-training converge. A potential issue

could be the requirement of using larger batch sizes for train-
ing the contrastive learning task. Initially, we tested with a
batch size of 100 for joint training by keeping the original
aspect ratio of KITTI images (i.e. 370 × 1224). However,
realizing that we might require larger batch sizes, we had
to downscale the KITTI images equal to the aspect ratio of
ImageNet images (i.e. 224 × 224), to be able to increase
the batch size to 300, but in this case the regression loss
for object detection did not converge and we get low per-
formance on the validation set of KITTI. We suspect that it
might be because of the drastic decrease in the image size, as
compared to the original aspect ratio of images in the KITTI



Corruptions: Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

Level 4

Source 93.2 94.7 94.3 84.5 89.4 85.3 77.2 83.4 79.4 72.8 44.5 88.1 63.4 71.2 58.8 78.7
ActMAD 65.7 70.1 68.6 68.4 67.0 64.8 58.4 64.6 60.7 48.3 37.7 57.3 41.9 48.1 48.4 58.0 ± 2e− 2

Level 3

Source 80.9 82.7 82.9 74.1 85.4 73.9 71.9 73.6 77.8 66.2 39.6 65.3 51.1 56.7 49.3 68.8
ActMAD 55.2 56.4 57.7 58.8 61.5 53.3 54.0 56.6 59.7 45.3 35.2 43.5 37.9 41.0 41.5 50.5 ± 1e− 2

Level 2

Source 63.6 67.8 74.6 59.4 65.4 57.7 65.2 77.5 67.0 56.3 36.4 51.5 60.9 43.3 46.3 59.5
ActMAD 46.7 48.3 52.8 47.9 47.5 43.7 49.7 56.5 52.0 41.4 33.4 38.6 52.0 35.8 39.3 45.7± 9e− 3

Level 1

Source 50.5 53.1 61.9 51.3 52.4 45.2 55.9 55.5 49.7 49.0 34.2 44.0 40.4 41.3 42.6 48.5
ActMAD 40.6 41.4 46.6 42.2 40.6 37.7 44.6 44.1 41.4 38.8 32.1 36.2 37.8 35.1 36.9 39.7± 6e− 3

Table 3. Top-1 Classification Error (%) for all corruptions in ImageNet-C (level 4 – 1), highest severity is reported in the main manuscript.
Lower is better. The results were obtained by adapting a ResNet-18 backbone, trained on ImageNet, to ImageNet-C. ActMAD results are
averaged over 10 runs, and we report the mean error and its standard deviation.

Corruptions: Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

CIFAR-10C

Source 23.6 21.9 28.7 5.2 27.9 9.1 4.4 5.5 8.4 14.2 2.4 15.2 19.9 25.5 13.3 15.0
ActMAD 12.9 11.0 11.7 4.1 11.2 5.8 2.7 4.5 4.4 9.3 2.0 6.1 7.2 4.4 10.9 7.3 ± 0.1

CIFAR-100C

Source 55.0 52.9 57.8 18.0 60.5 23.6 16.0 22.3 27.5 34.2 11.9 35.3 34.8 43.3 33.7 35.1
ActMAD 31.8 29.7 28.5 18.5 28.3 20.1 14.3 19.2 17.9 26.8 11.9 21.3 23.7 15.4 29.5 22.4 ± 0.1

ImageNet-C

Source 53.1 52.4 53.1 57.3 65.8 49.6 55.3 43.1 47.4 43.5 23.9 68.2 53.3 34.5 34.0 49.0

ActMAD 44.0 41.9 42.4 47.7 46.9 40.5 40.3 32.6 36.2 31.5 20.6 39.0 33.4 27.0 30.6 36.9 ± 0.3

Table 4. Top-1 Classification Error (%) for all corruptions in CIFAR-10/100C and ImageNet-C (level 5). Lower is better. All results are
obtained by using a ViT-B/16 backbone. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation.

dataset, which is unsuitable for the object detection task on
the KITTI dataset.

3. Additional Results
In this section we provide additional ablation studies,

results on lower severity levels for ActMAD, detailed results
for the vision transformer backbone [4] and the Continuous
Adaptation experiment.

3.1. Different Normalization Techniques

Recent test-time training approaches which adapt the
network statistics, e.g. NORM [26] and DUA [16], criti-
cally rely on batch normalization [11]. However, if the net-
work is equipped with other forms of normalization, e.g. In-
stance [24], Layer [1] or Group Normalization [28], these
approaches are not applicable. In contrast, our ActMAD is

agnostic to the architecture and can work with any type of
normalization applied in the network. We already showed
in the main manuscript (Table 3) that it can be applied to a
Transformer-based architecture, which uses Layer Norm. In
order to test the performance of ActMAD with different nor-
malization layers inside the convolution-based architectures,
we test ActMAD with a ResNet-50 equipped with Group
Normalization. Figure 2 shows the adaptation results of a
ResNet-50 with both Batch Normalization (BN) and Group
Normalization (GN). Using GN, our ActMAD performance
decreases by only 1.8% over the same architecture using BN.

3.2. Robustifying an Already Robust Model

ActMAD can be effectively used with any off-the-shelf
pre-trained model. To test this, we apply ActMAD for
test-time adaptation of an already robust, AugMix [10] pre-
trained ResNet-50. We further decrease the batch size for



Corruptions: Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

CIFAR-10C

Source 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7 18.3
CoTTA 12.9 13.8 12.0 9.1 14.3 9.2 9.2 12.0 10.0 12.1 7.0 14.3 14.1 9.9 12.7 11.5 ± 0.1
ActMAD 13.3 11.6 15.7 8.7 16.7 9.9 8.3 10.5 10.0 12.8 6.9 10.6 13.3 9.9 13.4 11.4 ± 0.1

CIFAR-100C

Source 65.7 60.1 59.1 32.0 51.0 33.6 32.4 41.4 45.2 51.4 31.6 55.5 40.3 59.7 42.4 46.8
CoTTA 40.8 39.2 40.8 29.9 40.9 30.7 29.8 35.9 34.9 43.4 26.9 38.2 36.6 30.9 36.8 35.7 ± 0.4
ActMAD 39.6 38.3 41.4 31.8 41.7 32.7 30.9 34.6 33.6 42.9 27.4 36.3 37.2 31.9 38.6 35.9 ± 0.5

Table 5. Top-1 Classification Error (%) for all corruptions in CIFAR-10/100C (level 5), while continuously adapting to corruptions. Lower is
better. These results were obtained by adapting a Wide-ResNet-40-2 backbone, trained on CIFAR-10/100, to CIFAR-10/100C. ActMAD
results are averaged over 10 runs, and we report the mean error and its standard deviation. The lowest error is shown in bold, the second best
is underlined.

TENT EATA ActMAD TENT+ActMAD EATA+ActMAD

67.2 64.9 66.0 64.1 62.7

Table 6. Top-1 Error (%) averaged over 15 corruptions in the
ImageNet-C dataset while adapting an ImageNet pre-trained
ResNet-18 from PyTorch model zoo.

Source-only MemCLR ActMAD

mean Avg. Prec. (mAP) 25.2 29.8 34.5

Table 7. Mean Average Precision (mAP@50) for a Faster R-
CNN pre-trained on the Cityscapes dataset and adapted to the
FoggyCityScapes test split.

CFA DUA TENT SHOT TTT++ ActMADfull ActMADaffine

5.3 2.1 5.2 6.1 6.8 5.8 5.2

Table 8. Total runtime (seconds) for CIFAR-10C, batch size 128
(see Table 1, main paper). ActMADaffine results are provided in
Table 7, main paper.

adaptation on this backbone. Results for this experiment
(highest severity) are provided in Figure 3. We find that Act-
MAD decreases the error significantly even for an already
robust model. For example, the Source (without adaptation)
top-1 error (%) over the 15 corruptions on ImageNet-C is
61.1%, while after ActMAD adaptation the error decreases
to merely 43.5%. Furthermore, we also see that while apply-
ing ActMAD to a robust model, the decrease in performance
with decreasing batch size is also minimal (similar to the
ablation study in the main manuscript, Figure 4, with ResNet-
18 backbone). For example, while decreasing the batch size
from 125 to 10, the error increases by only 4.1%.

3.3. Lower Severity Results

In the main manuscript we provide results for the highest
severity (Level 5) in the Robust Bench [9]. Our ActMAD
achieves impressive gains in performance even for lower
severity levels. In Table 1 and Table 2 we provide the mean
and standard deviation of results (over 10 random runs) ob-
tained by ActMAD on lower severities (i.e. Levels 4 – 1)
on CIFAR-10/100C. We use the Wide-ResNet-40 model for
these evaluations. Furthermore, in Table 3, we provide the

0 200 400 800 1000 1200 1400 1600
Time (Seconds)

65

70

75

80

85

M
ea

n 
A

ve
ra

ge
 P

re
ci

si
on

 (
%

)

Stationary
Phase 1

Source Only (66.4%)

Clear →Rain

Stationary Phase

Peak ActMAD Performance

Stationary
Phase 2

Stationary
Phase 3

Stationary
Phase 4

Stationary
Phase 5

Figure 4. Mean Average Precision (mAP@50) for ActMAD adap-
tation from KITTI-Clear → KITTI-Rain for a simulated scenario
where the car is assumed to be stationary. The gray patches repre-
sent the randomly chosen ‘stationary’ intervals.

mean and standard deviation of results over 10 random runs
on the large scale ImageNet-C (with ResNet-18) dataset
for lower severities (Levels 4 – 1). The results show that
ActMAD can even be applied when the distribution shift
between the train and test data is not too large.

3.4. Vision Transformer

ActMAD can also be seamlessly applied to the Vision
Transformer backbone. In the main manuscript we provide
mean results over the 15 corruptions for CIFAR-10/100C
(Level 5). For reference, in Table 4 we provide results for
each individual corruption for the highest severity in the
CIFAR-10/100C. Additionally, we also provide ActMAD re-
sults for the highest severity on the ImageNet-C benchmark.



3.5. Continuous Adaptation to Perturbations

In the main manuscript (Table 4) we compare with
CoTTA [27] on their continuous adaptation benchmark and
provide the mean error over the 15 corruptions (highest sever-
ity) in the CIFAR-C benchmark. In Table 5 we provide
detailed results, averaged over 10 random runs, for each
individual corruption for documentation purposes.

4. Additional insights

Here, we provide comparisons with EATA [17] (for image
classification) and MemCLR [25] (for object detection), and
test ActMAD in more realistic scenarios.

4.1. Comparison with additional baselines

Image Classification: In Table 6 we compare our Act-
MAD with two other entropy based methods, EATA [17]
and TENT [26]. For these results, an ImageNet pre-trained
ResNet-18 is adapted to ImageNet-C. We see that the re-
cent state-of-the-art method for the entropy based adapta-
tion EATA, outperforms ActMAD. However, we find that
the logit-level supervision provided by EATA and TENT is
complementary to the test-time supervision provided by Act-
MAD. Thus, combining the entropy based objectives with
activation distribution matching objective from ActMAD,
results in substantial performance gains. It is also worth
highlighting, that EATA (like TENT) is also reliant on min-
imizing the entropy of the output distribution for test-time
adaptation, rendering it unsuitable for application to regres-
sion tasks (e.g. Object Detection). Whereas, ActMAD is free
from such constraints and is task-agnostic in nature.

Object Detection: In Table 7 we compare our ActMAD
with MemClr [25]. Our ActMAD outperforms MemCLR
comfortably in their evaluation setup. To be compara-
ble with the results reported in their paper, we re-train a
Faster-RCNN [20] implemented in the Detectron-2 frame-
work [29] (using their default settings) on the train split
of the CityScapes dataset [3]. For TTT, we adapt this pre-
trained model to the FoggyCityScapes [21] test split by using
a batchsize of 4 and a learning rate of 5e−4.

4.2. ActMAD in stationary scenarios

In practice such scenarios can be encountered where a
vehicle is stationary for a certain period of time. For exam-
ple, when a vehicle is parked, it can happen that the sensors
(e.g., camera), mounted on the vehicle is recording a similar
type of data for the stationary period. Ideally, the test-time
training algorithm should not diverge catastrophically while
adapting on this similar type of data being recorded. To test
ActMAD in such a scenario, we choose random stationary
intervals while adapting a YOLOv3 object detector from

KITTI-Clear → KITTI-Rain. To simulate the stationary in-
tervals, we adapt on the same batch of data for this randomly
chosen interval. These online adaptation results are plot-
ted in Figure 4. We see that during the stationary intervals,
the performance of ActMAD suffers a minor degradation,
however, when the diverse batches of data are encountered,
ActMAD recovers quickly. In practice, to counter the minor
degradation in performance during the stationary intervals,
adaptation can be limited to batches with sufficient diversity.
One way to achieve this can be to threshold the difference be-
tween the statistics of the intermediate activation responses
from the batches received in an online manner at test-time.

4.3. Runtime comparison with baselines

Contrary to test-time training approaches (e.g. [12, 26])
which only adapt the affine parameters at test-time, ActMAD
proposes to optimize the entire parameter vector for test-time
training. In order to compare the runtime for adaptation at
test-time, we adapt ActMAD and other baselines to a single
distribution shift in CIFAR-10C and provide the results in
Table 8. The runtimes are on-par for ActMAD and all other
approaches, except for DUA (which only adjusts the running
mean and variance estimates, without backpropagation).

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton.

Layer Normalization. arXiv, 2016. 4
[2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-

frey Hinton. A Simple Framework for Contrastive Learning
of Visual Representations. In Proc. ICML, 2020. 3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for
Semantic Urban Scene Understanding. In Proc. CVPR, 2016.
6

[4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In Proc. ICLR, 2020.
1, 4

[5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets Robotics: The KITTI Dataset. IJR,
32(11):1231–1237, 2013. 1

[6] Shirsendu Sukanta Halder, Jean-François Lalonde, and
Raoul de Charette. Physics-based Rendering for Improving
Robustness to Rain. In Proc. ICCV, 2019. 2

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep Residual Learning for Image Recognition. In Proc.
CVPR, 2016. 1

[8] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The Many Faces of Ro-
bustness: A Critical Analysis of Out-of-Distribution General-
ization. In Proc. ICCV, 2021. 1



[9] Dan Hendrycks and Thomas Dietterich. Benchmarking Neu-
ral Network Robustness to Common Corruptions and Pertur-
bations. In Proc. ICLR, 2019. 2, 5

[10] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph,
Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A
simple data processing method to improve robustness and
uncertainty. In Proc. ICLR, 2020. 1, 2, 4

[11] Sergey Ioffe and Christian Szegedy. Batch Normalization:
Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proc. ICML, 2015. 4

[12] Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Robus-
tifying Vision Transformer without Retraining from Scratch
by Test-Time Class-Conditional Feature Alignment. Proc.
IJCAI, 2022. 6

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common Objects in Context. In
Proc. ECCV, 2014. 2

[14] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste
Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++:
When Does Self-Supervised Test-Time Training Fail or
Thrive? In NeurIPS, 2021. 3

[15] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning Transferable Features with Deep Adaptation
Networks. In Proc. ICML, 2015. 1

[16] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and
Horst Bischof. The Norm Must Go On: Dynamic Unsuper-
vised Domain Adaptation by Normalization. In Proc. CVPR,
2022. 2, 4

[17] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen,
Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient Test-
Time Model Adaptation without Forgetting. In Proc. ICML,
2022. 6

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-
dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu
Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Im-
perative Style, High-Performance Deep Learning Library. In
NeurIPS, 2019. 1

[19] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental
Improvement. arXiv, 2018. 1

[20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks. In NeurIPS, 2015. 6

[21] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic
Foggy Scene Understanding with Synthetic Data. IJCV, 2018.
6

[22] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bring-
mann, Wieland Brendel, and Matthias Bethge. Improving
Robustness Against Common Corruptions by Covariate Shift
Adaptation. In NeurIPS, 2020. 2

[23] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei
Efros, and Moritz Hardt. Test-Time Training with Self-
Supervision for Generalization under Distribution Shifts. In
Proc. ICML, 2020. 2

[24] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance Normalization: The Missing Ingredient for Fast Styl-
ization. arXiv, 2016. 4

[25] Vibashan VS, Poojan Oza, and Vishal M Patel. Towards
Online Domain Adaptive Object Detection. In Proc. WACV,
2023. 6

[26] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Ol-
shausen, and Trevor Darrell. Tent: Fully Test-time Adaptation
by Entropy Minimization. In Proc. ICLR, 2020. 4, 6

[27] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Con-
tinual Test-Time Domain Adaptation. In Proc. CVPR, 2022.
6

[28] Yuxin Wu and Kaiming He. Group Normalization. In Proc.
ECCV, 2018. 1, 4

[29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen
Lo, and Ross Girshick. Detectron2. https://github.
com/facebookresearch/detectron2, 2019. 6

[30] Sergey Zagoruyko and Nikos Komodakis. Wide Residual
Networks. In Proc. BMVC, 2016. 1


