# ActMAD: Activation Matching to Align Distributions for Test-Time-Training Supplementary Material

M. Jehanzeb Mirza<sup>1,2</sup> Pol Jané Soneira<sup>3</sup> Horst Possegger<sup>1</sup> Wei Lin<sup>1,4</sup> Horst Bischof<sup>1,2</sup>

Mateusz Kozinski<sup>1</sup>

<sup>1</sup>Institute for Computer Graphics and Vision, TU Graz, Austria.
<sup>2</sup>Christian Doppler Laboratory for Embedded Machine Learning.
<sup>3</sup>Institute of Control Systems, KIT, Germany.
<sup>4</sup>Christian Doppler Laboratory for Semantic 3D Computer Vision.

In the following, we present additional continuous online adaptation scenarios in which we test ActMAD (Section 1), provide all implementation details for baselines and our experiments to support reproducibility (Section 2), present additional ablation studies (Section 3), and more comparisons and insights for our ActMAD (Section 4).

# **1. Continuous Online Adaptation**

Our location-aware feature alignment is especially helpful for the task of object detection. The fine-grained supervision helps ActMAD to adapt to different weather scenarios in a dynamic and efficient manner. Moreover, ActMAD also shows promising results while adapting to different weather scenarios in a continuous manner. In the main manuscript (Figure 1), we show such a simulated continuous adaptation scenario (Clear $\rightarrow$ Fog $\rightarrow$ Snow $\rightarrow$ Rain $\rightarrow$ Clear). We further test ActMAD in similar scenarios where the weather conditions are encountered in a different sequence. In Figure 1a and 1b, we present results for adaptation with ActMAD in two such scenarios.

The results show that ActMAD can achieve impressive results in different scenarios and the sequence of weather conditions which are encountered does not matter. This is close to the requirements in the real-world, where different weather conditions can occur in any order during driving. We also see from the results that ActMAD can even improve the performance of a KITTI [5] pre-trained YOLOv3 [19] on the validation split from the dataset (which represents the *Clear* weather condition). For example, in Figure 1b, where order of the weather conditions is *Clear* $\rightarrow$ *Clear* $\rightarrow$ *Fog* $\rightarrow$ *Snow* $\rightarrow$ *Rain* $\rightarrow$ *Clear*, ActMAD achieves 1.0% higher Mean Average Precision while adapting from *Clear* $\rightarrow$ *Clear* at the beginning of the adaptation cycle. This is because even though the adaptation is performed from *Clear* $\rightarrow$ *Clear*, the activation statistics could

be different between the training and inference, *e.g.*, due to slight change in the environmental conditions or scenery. Our ActMAD helps to rectify this mismatch to obtain an increase in performance.

# 2. Implementation Details

**Hardware:** All our experiments are performed on a single NVIDIA<sup>®</sup> GeForce<sup>®</sup> RTX 3090 and a GPU server consisting of four Quadro RTX 8000.

**CIFAR-10/100C:** We use an AugMix pre-trained [10] Wide-Resnet-40 [30] for our main results on CIFAR-10/100C. For experiments with ViT-B/16 [4] we finetune the ViT backbone (pre-trained on ImageNet-21k) for 10000 iterations on the training sets of CIFAR-10/100 [15] with a learning rate of 3e-2.

**ImageNet-C:** All ImageNet-C experiments use ImageNet pre-trained models. For the main results with ResNet-18 [7] we use the pre-trained weights from the PyTorch [18] model zoo. For experiments with ResNet-50 using Group Normalization [28] (Section 3.1), we use pre-trained weights from a third-party open source repository<sup>1</sup>. For experiments with a DeepAug [8] pre-trained ResNet-50 (Section 3.2), we use the pre-trained weights from Robust Bench<sup>2</sup>. For experiments on ImageNet-C with ViT-B/16 model (Section 3.4), we use the pre-trained weights from the open source *timm* library<sup>3</sup>.

**KITTI:** All KITTI [5] experiments start with a model pretrained on the original KITTI dataset. As it is collected

<sup>&</sup>lt;sup>1</sup>github.com/ppwwyyxx/GroupNorm-reproduce, commit: 883f694 <sup>2</sup>robustbench.github.io/

<sup>&</sup>lt;sup>3</sup>github.com/rwightman/pytorch-image-models, release: 0.6.11

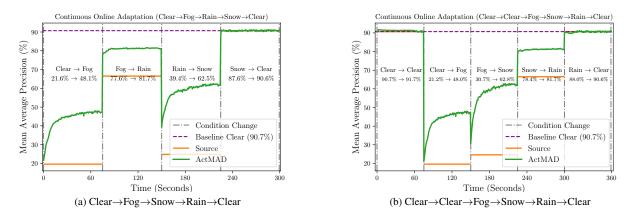



Figure 1. Mean Average Precision (mAP@50) for two simulated continuous online adaptation scenarios with different weather sequences. *Source* refers to the model trained on clear weather condition and tested on the changing weather without adaptation.

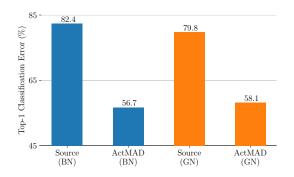



Figure 2. Mean Top-1 Classification Error (%) over all corruptions in ImageNet-C (Level 5) using a ResNet-50 with different normalization layers. BN: Batch Normalization, GN: Group Normalization. *Source* refer to results obtained without adaptation.

mostly in clear (*i.e.* sunny) weather conditions, we refer to it as KITTI-Clear. We adapt this model to degrading weather conditions, *i.e.* fog [6], rain [6] and snow [9]. For KITTI-Clear, we re-train an MS-COCO [13] pre-trained YOLOv3 in a supervised manner on the train split of the KITTI dataset. The model is trained for 100 epochs with a batch size of 30, while all the other training details are kept constant as in the PyTorch implementation of YOLOv3<sup>4</sup>.

**Baselines:** Since all the baselines used to compare our results are primarily tested for object recognition on CIFAR-10/100C [9] and ImageNet-C [9], we use their official open-source codes and use all the hyper-parameters, which they report in their paper.

For object detection experiments, only DUA [16] provides official results<sup>5</sup>. Therefore, we implement NORM [22] for object detection using their official repository<sup>6</sup>. Since



<sup>&</sup>lt;sup>5</sup>https://github.com/jmiemirza/DUA, commit: d6e5398

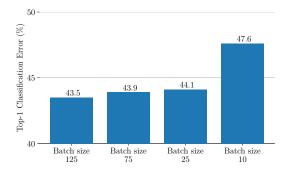



Figure 3. Mean Top-1 Classification Error (%) over all corruptions in ImageNet-C (Level 5) while decreasing the batch size. The backbone used is an AugMix [10] pre-trained ResNet-50. Here, *Source* (without adaptation) Error is 61.1%.

NORM is a gradient-free approach, it does not rely on any hyper-parameters. We use a batch size of 30 to obtain all the results for NORM.

TTT [23] uses rotation prediction as an auxiliary task for test-time training. TTT is also primarily tested for object recognition by its authors. We implement TTT for object detection for the purpose of comparison in our paper. We use the same batch size (*i.e.* 30), as for ActMAD. For jointtraining with the auxiliary rotation prediction task we take the output from the feature encoder of YOLOv3 and use a single-layer linear classifier head to predict the rotation of the input image. The hyperparameters used for the KITTI pre-training (for ActMAD experiments) and joint-training are kept the same. However, we find that training a network jointly for the classification task of rotation prediction and object detection requires special design choices. For example, we use a loss scaling factor of 0.4 for the selfsupervised task during joint-training to make the network converge. Similarly, the same loss scaling factor is used during test-time training. The evaluation protocol is kept

<sup>&</sup>lt;sup>6</sup>https://github.com/bethgelab/robustness, commit: aa0a679

| Gauss | Shot                                               | Impul                                                                                                | Defcs                                                                                                                                            | Gls                                                                                                                                                                                        | Mtn                                                                                                                                                                                                                                                                                                             | Zm                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Snw                                                                                                                                                                                                                                                                                                                                                     | Frst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Brt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cnt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Els                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Px                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jpg N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Iean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------|----------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                    |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                               | evel 4                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 24.1  | 17.1                                               | 16.4                                                                                                 | 6.6                                                                                                                                              | 23.5                                                                                                                                                                                       | 8.4                                                                                                                                                                                                                                                                                                             | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12.2                                                                                                                                                                                                                                                                                                                                                    | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 11.7  | 9.8                                                | 11.7                                                                                                 | 5.9                                                                                                                                              | 16.0                                                                                                                                                                                       | 7.1                                                                                                                                                                                                                                                                                                             | 6.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.1                                                                                                                                                                                                                                                                                                                                                     | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 7e - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                    |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                               | evel 3                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.4  | 14.6                                               | 9.7                                                                                                  | 5.4                                                                                                                                              | 12.9                                                                                                                                                                                       | 8.6                                                                                                                                                                                                                                                                                                             | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.9                                                                                                                                                                                                                                                                                                                                                     | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.1 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 10.5  | 8.8                                                | 8.7                                                                                                  | 5.3                                                                                                                                              | 10.6                                                                                                                                                                                       | 7.2                                                                                                                                                                                                                                                                                                             | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.0                                                                                                                                                                                                                                                                                                                                                     | 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.9 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $.6 \pm 7e - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |                                                    |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                               | evel 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.4  | 8.8                                                | 8.0                                                                                                  | 5.1                                                                                                                                              | 14.2                                                                                                                                                                                       | 6.5                                                                                                                                                                                                                                                                                                             | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.2                                                                                                                                                                                                                                                                                                                                                     | 8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.9 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 8.4   | 6.6                                                | 7.3                                                                                                  | 5.0                                                                                                                                              | 10.9                                                                                                                                                                                       | 6.2                                                                                                                                                                                                                                                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.1                                                                                                                                                                                                                                                                                                                                                     | 6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.0 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\pm 8e - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |                                                    |                                                                                                      |                                                                                                                                                  |                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                               | evel 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8.7   | 6.5                                                | 6.2                                                                                                  | 4.9                                                                                                                                              | 14.1                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                                                                             | 5.9                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.4                                                                                                                                                                                                                                                                                                                                                     | 6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6.4   | 5.7                                                | 6.0                                                                                                  | 4.9                                                                                                                                              | 10.3                                                                                                                                                                                       | 5.5                                                                                                                                                                                                                                                                                                             | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9                                                                                                                                                                                                                                                                                                                                                     | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.8 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\pm 9e - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 24.1<br>11.7<br>20.4<br>10.5<br>13.4<br>8.4<br>8.7 | 24.1   17.1     11.7   9.8     20.4   14.6     10.5   8.8     13.4   8.8     8.4   6.6     8.7   6.5 | 24.1   17.1   16.4     11.7   9.8   11.7     20.4   14.6   9.7     10.5   8.8   8.7     13.4   8.8   8.0     8.4   6.6   7.3     8.7   6.5   6.2 | 24.1   17.1   16.4   6.6     11.7   9.8   11.7   5.9     20.4   14.6   9.7   5.4     10.5   8.8   8.7   5.3     13.4   8.8   8.0   5.1     8.4   6.6   7.3   5.0     8.7   6.5   6.2   4.9 | 24.1     17.1     16.4     6.6     23.5       11.7     9.8     11.7     5.9     16.0       20.4     14.6     9.7     5.4     12.9       10.5     8.8     8.7     5.3     10.6       13.4     8.8     8.0     5.1     14.2       8.4     6.6     7.3     5.0     10.9       8.7     6.5     6.2     4.9     14.1 | 24.1   17.1   16.4   6.6   23.5   8.4     11.7   9.8   11.7   5.9   16.0   7.1     20.4   14.6   9.7   5.4   12.9   8.6     10.5   8.8   8.7   5.3   10.6   7.2     11.3.4   8.8   8.0   5.1   14.2   6.5     8.4   6.6   7.3   5.0   10.9   6.2     13.4   8.8   8.0   5.1   14.2   6.5     8.4   6.6   7.3   5.0   10.9   6.2     13.4   8.8   8.0   5.1   14.2   6.5     8.4   6.6   7.3   5.0   10.9   6.2     10.5   6.5   6.2   4.9   14.1   5.5 | 24.1   17.1   16.4   6.6   23.5   8.4   7.4     11.7   9.8   11.7   5.9   16.0   7.1   6.2     20.4   14.6   9.7   5.4   12.9   8.6   6.5     10.5   8.8   8.7   5.3   10.6   7.2   5.9     Level 2     13.4   8.8   8.0   5.1   14.2   6.5   5.8     8.4   6.6   7.3   5.0   10.9   6.2   5.6     Level 1     8.7   6.5   6.2   4.9   14.1   5.5   5.9 | 24.1     17.1     16.4     6.6     23.5     8.4     7.4     12.2       11.7     9.8     11.7     5.9     16.0     7.1     6.2     9.1       20.4     14.6     9.7     5.4     12.9     8.6     6.5     9.9       10.5     8.8     8.7     5.3     10.6     7.2     5.9     8.0       11.7     9.8     8.7     5.3     10.6     7.2     5.9     8.0       10.5     8.8     8.7     5.3     10.6     7.2     5.9     8.0       11.3.4     8.8     8.0     5.1     14.2     6.5     5.8     9.2       13.4     8.8     8.0     5.1     14.2     6.5     5.8     9.2       8.4     6.6     7.3     5.0     10.9     6.2     5.6     7.1       8.4     6.6     7.3     5.0     14.1     5.5     5.9     6.4 | 24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9     Level 3     Level 3     11.4   9.7   5.4   12.9   8.6   6.5   9.9   11.4     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9     Level 2     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5     8.4   6.6   7.3   5.0   10.9   6.2   5.6   7.1   6.7     8.7   6.5   6.2   4.9   14.1   5.5   5.9   6.4   6.5 | Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9     Level 3     Level 3     Level 3     11.4   6.3     10.6   7.2   5.9   8.0   7.9   5.9     Level 2     Level 2     113.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3     8.4   6.6   7.3   5.0   10.9   6.2   5.6   7.1   6.7   5.1     Level 1     8.7   6.5   6.2   4.9   14.1   5.5   < | Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4     Level 3     Level 3     Level 3     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1     Level 2     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3     14.9 <t< td=""><td>Image: constraint of the level of the l</td><td>Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2     Level 3     Level 3     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9     Level 3     Level 2     Level 2     113.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5</td><td>Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6   19.4     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2   7.1     Level 3     Level 3     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4   9.6     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1     1.1   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1     1.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5   7.8     1.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1</td></t<> <td>Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6   19.4   13.1   11     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2   7.1   11.8   8     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4   9.6   12.1   9     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1   10.9   7     Level 2     Level 2     Level 2     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5   7.8   10.9   8     8.4   6.6   7.3   5.0   10.9   6.2   5.6   7.1   6.7&lt;</td> | Image: constraint of the level of the l | Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2     Level 3     Level 3     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9     Level 3     Level 2     Level 2     113.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5 | Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6   19.4     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2   7.1     Level 3     Level 3     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4   9.6     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1     1.1   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1     1.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5   7.8     1.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1 | Level 4     24.1   17.1   16.4   6.6   23.5   8.4   7.4   12.2   11.5   8.3   6.2   9.2   10.6   19.4   13.1   11     11.7   9.8   11.7   5.9   16.0   7.1   6.2   9.1   7.9   6.5   5.4   6.1   9.2   7.1   11.8   8     20.4   14.6   9.7   5.4   12.9   8.6   6.5   9.9   11.4   6.3   5.5   7.2   7.4   9.6   12.1   9     10.5   8.8   8.7   5.3   10.6   7.2   5.9   8.0   7.9   5.9   5.1   5.6   6.9   6.1   10.9   7     Level 2     Level 2     Level 2     13.4   8.8   8.0   5.1   14.2   6.5   5.8   9.2   8.5   5.3   5.3   6.1   6.5   7.8   10.9   8     8.4   6.6   7.3   5.0   10.9   6.2   5.6   7.1   6.7< |

Table 1. Top-1 Classification Error (%) for all corruptions in CIFAR-10C (level 4 - 1), highest severity is reported in the main manuscript. Lower is better. The results were obtained by adapting a **WRN-40-2 backbone**, trained on CIFAR-10, to CIFAR-10C. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation.

| Corruptions: | Gauss   | Shot | Impul | Defcs | Gls  | Mtn  | Zm    | Snw  | Frst | Fg   | Brt  | Cnt  | Els  | Px   | Jpg  | Mean                      |
|--------------|---------|------|-------|-------|------|------|-------|------|------|------|------|------|------|------|------|---------------------------|
|              | Level 4 |      |       |       |      |      |       |      |      |      |      |      |      |      |      |                           |
| Source       | 60.7    | 51.6 | 47.9  | 27.1  | 54.4 | 30.3 | 28.9  | 37.4 | 39.0 | 35.4 | 27.2 | 35.9 | 34.4 | 39.0 | 40.1 | 39.3                      |
| ActMAD       | 38.0    | 34.9 | 35.3  | 26.1  | 41.1 | 28.0 | 27.1  | 32.8 | 30.8 | 31.0 | 24.7 | 26.6 | 31.9 | 28.4 | 37.2 | $31.6\ \pm 4e-3$          |
|              | Level 3 |      |       |       |      |      |       |      |      |      |      |      |      |      |      |                           |
| Source       | 55.2    | 45.9 | 36.9  | 25.7  | 39.9 | 30.5 | 27.4  | 33.3 | 38.1 | 29.5 | 25.5 | 30.5 | 28.6 | 30.3 | 38.0 | 34.4                      |
| ActMAD       | 36.6    | 32.9 | 30.5  | 24.8  | 34.1 | 28.2 | 26.3  | 30.3 | 30.4 | 27.9 | 24.1 | 25.5 | 27.6 | 26.4 | 35.7 | $29.4\ \pm 3\mathrm{e}-3$ |
|              |         |      |       |       |      |      | Level | 2    |      |      |      |      |      |      |      |                           |
| Source       | 44.6    | 34.5 | 30.7  | 24.3  | 41.5 | 27.7 | 26.2  | 32.7 | 31.8 | 26.8 | 24.4 | 27.5 | 27.9 | 28.0 | 36.5 | 31.0                      |
| ActMAD       | 32.4    | 28.5 | 27.4  | 24.0  | 33.7 | 26.5 | 25.4  | 28.9 | 28.0 | 25.4 | 23.7 | 24.8 | 27.6 | 26.1 | 34.4 | $27.8\ \pm 2\mathrm{e}-3$ |
| Level 1      |         |      |       |       |      |      |       |      |      |      |      |      |      |      |      |                           |
| Source       | 34.4    | 29.6 | 26.9  | 23.8  | 42.9 | 25.6 | 26.1  | 26.1 | 27.4 | 24.0 | 23.8 | 24.3 | 28.4 | 25.2 | 32.4 | 28.1                      |
| ActMAD       | 28.5    | 26.7 | 25.6  | 23.5  | 33.7 | 24.9 | 25.1  | 25.4 | 25.6 | 23.7 | 23.5 | 23.8 | 28.2 | 24.8 | 31.0 | $26.3 \pm 2e - 3$         |

Table 2. Top-1 Classification Error (%) for all corruptions in CIFAR-100C (level 4 - 1), highest severity is reported in the main manuscript. Lower is better. The results were obtained by adapting a **WRN-40-2 backbone**, trained on CIFAR-100, to CIFAR-100C. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation.

consistent for all baselines and our method.

We also implemented TTT++ [14] on YOLOv3 in order to use it as a baseline for object detection experiments. We used the same prediction head, hyper-parameters and the augmentations (for creating two augmented views for SimCLR [2] training) used by the original TTT++ paper for their experiments on CIFAR-10/100. We experimented with several design choices for joint-training (object detection and contrastive SimCLR task), each for a total of 500 epochs on the KITTI train set, starting from the pre-trained weights on MS-COCO. However, despite the best of our efforts we could not make the joint-training converge. A potential issue could be the requirement of using larger batch sizes for training the contrastive learning task. Initially, we tested with a batch size of 100 for joint training by keeping the original aspect ratio of KITTI images (*i.e.*  $370 \times 1224$ ). However, realizing that we might require larger batch sizes, we had to downscale the KITTI images equal to the aspect ratio of ImageNet images (*i.e.*  $224 \times 224$ ), to be able to increase the batch size to 300, but in this case the regression loss for object detection did not converge and we get low performance on the validation set of KITTI. We suspect that it might be because of the drastic decrease in the image size, as compared to the original aspect ratio of images in the KITTI

| Corruptions | Gauss   | Shot | Impul | Defcs | Gls  | Mtn  | Zm   | Snw    | Frst | Fg   | Brt  | Cnt  | Els  | Px   | Jpg  | Mean                      |
|-------------|---------|------|-------|-------|------|------|------|--------|------|------|------|------|------|------|------|---------------------------|
|             | Level 4 |      |       |       |      |      |      |        |      |      |      |      |      |      |      |                           |
| Source      | 93.2    | 94.7 | 94.3  | 84.5  | 89.4 | 85.3 | 77.2 | 83.4   | 79.4 | 72.8 | 44.5 | 88.1 | 63.4 | 71.2 | 58.8 | 78.7                      |
| ActMAD      | 65.7    | 70.1 | 68.6  | 68.4  | 67.0 | 64.8 | 58.4 | 64.6   | 60.7 | 48.3 | 37.7 | 57.3 | 41.9 | 48.1 | 48.4 | $58.0\pm2\mathrm{e}-2$    |
| Level 3     |         |      |       |       |      |      |      |        |      |      |      |      |      |      |      |                           |
| Source      | 80.9    | 82.7 | 82.9  | 74.1  | 85.4 | 73.9 | 71.9 | 73.6   | 77.8 | 66.2 | 39.6 | 65.3 | 51.1 | 56.7 | 49.3 | 68.8                      |
| ActMAD      | 55.2    | 56.4 | 57.7  | 58.8  | 61.5 | 53.3 | 54.0 | 56.6   | 59.7 | 45.3 | 35.2 | 43.5 | 37.9 | 41.0 | 41.5 | $50.5 \pm 1e - 2$         |
|             |         |      |       |       |      |      | L    | evel 2 |      |      |      |      |      |      |      |                           |
| Source      | 63.6    | 67.8 | 74.6  | 59.4  | 65.4 | 57.7 | 65.2 | 77.5   | 67.0 | 56.3 | 36.4 | 51.5 | 60.9 | 43.3 | 46.3 | 59.5                      |
| ActMAD      | 46.7    | 48.3 | 52.8  | 47.9  | 47.5 | 43.7 | 49.7 | 56.5   | 52.0 | 41.4 | 33.4 | 38.6 | 52.0 | 35.8 | 39.3 | $45.7 {\pm}9\mathrm{e}-3$ |
| Level 1     |         |      |       |       |      |      |      |        |      |      |      |      |      |      |      |                           |
| Source      | 50.5    | 53.1 | 61.9  | 51.3  | 52.4 | 45.2 | 55.9 | 55.5   | 49.7 | 49.0 | 34.2 | 44.0 | 40.4 | 41.3 | 42.6 | 48.5                      |
| ActMAD      | 40.6    | 41.4 | 46.6  | 42.2  | 40.6 | 37.7 | 44.6 | 44.1   | 41.4 | 38.8 | 32.1 | 36.2 | 37.8 | 35.1 | 36.9 | $39.7{\pm}6\mathrm{e}-3$  |

Table 3. Top-1 Classification Error (%) for all corruptions in ImageNet-C (level 4 - 1), highest severity is reported in the main manuscript. Lower is better. The results were obtained by adapting a **ResNet-18 backbone**, trained on ImageNet, to ImageNet-C. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation.

| Corruptions: | Gauss     | Shot | Impul | Defcs | Gls  | Mtn  | Zm     | Snw  | Frst | Fg   | Brt  | Cnt  | Els  | Px   | Jpg   Mean               |
|--------------|-----------|------|-------|-------|------|------|--------|------|------|------|------|------|------|------|--------------------------|
|              | CIFAR-10C |      |       |       |      |      |        |      |      |      |      |      |      |      |                          |
| Source       | 23.6      | 21.9 | 28.7  | 5.2   | 27.9 | 9.1  | 4.4    | 5.5  | 8.4  | 14.2 | 2.4  | 15.2 | 19.9 | 25.5 | 13.3   15.0              |
| ActMAD       | 12.9      | 11.0 | 11.7  | 4.1   | 11.2 | 5.8  | 2.7    | 4.5  | 4.4  | 9.3  | 2.0  | 6.1  | 7.2  | 4.4  | $10.9   7.3 \pm 0.1$     |
| CIFAR-100C   |           |      |       |       |      |      |        |      |      |      |      |      |      |      |                          |
| Source       | 55.0      | 52.9 | 57.8  | 18.0  | 60.5 | 23.6 | 16.0   | 22.3 | 27.5 | 34.2 | 11.9 | 35.3 | 34.8 | 43.3 | 33.7   35.1              |
| ActMAD       | 31.8      | 29.7 | 28.5  | 18.5  | 28.3 | 20.1 | 14.3   | 19.2 | 17.9 | 26.8 | 11.9 | 21.3 | 23.7 | 15.4 | 29.5   22.4 $\pm 0.1$    |
|              |           |      |       |       |      | In   | nageNe | et-C |      |      |      |      |      |      |                          |
| Source       | 53.1      | 52.4 | 53.1  | 57.3  | 65.8 | 49.6 | 55.3   | 43.1 | 47.4 | 43.5 | 23.9 | 68.2 | 53.3 | 34.5 | 34.0   49.0              |
| ActMAD       | 44.0      | 41.9 | 42.4  | 47.7  | 46.9 | 40.5 | 40.3   | 32.6 | 36.2 | 31.5 | 20.6 | 39.0 | 33.4 | 27.0 | $30.6 \mid 36.9 \pm 0.3$ |

Table 4. Top-1 Classification Error (%) for all corruptions in CIFAR-10/100C and ImageNet-C (level 5). Lower is better. All results are obtained by using a VIT-B/16 backbone. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation.

dataset, which is unsuitable for the object detection task on the KITTI dataset.

# **3. Additional Results**

In this section we provide additional ablation studies, results on lower severity levels for ActMAD, detailed results for the vision transformer backbone [4] and the Continuous Adaptation experiment.

# 3.1. Different Normalization Techniques

Recent test-time training approaches which adapt the network statistics, *e.g.* NORM [26] and DUA [16], critically rely on batch normalization [11]. However, if the network is equipped with other forms of normalization, *e.g.* Instance [24], Layer [1] or Group Normalization [28], these approaches are not applicable. In contrast, our ActMAD is

agnostic to the architecture and can work with any type of normalization applied in the network. We already showed in the main manuscript (Table 3) that it can be applied to a Transformer-based architecture, which uses Layer Norm. In order to test the performance of ActMAD with different normalization layers inside the convolution-based architectures, we test ActMAD with a ResNet-50 equipped with Group Normalization. Figure 2 shows the adaptation results of a ResNet-50 with both Batch Normalization (BN) and Group Normalization (GN). Using GN, our ActMAD performance decreases by only 1.8% over the same architecture using BN.

### **3.2. Robustifying an Already Robust Model**

ActMAD can be effectively used with any off-the-shelf pre-trained model. To test this, we apply ActMAD for test-time adaptation of an already robust, AugMix [10] pretrained ResNet-50. We further decrease the batch size for

| Corruptions: | Gauss       | Shot        | Impul       | Defcs       | Gls         | Mtn         | Zm          | Snw         | Frst | Fg          | Brt         | Cnt         | Els         | Px          | Jpg         | Mean                       |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------|-------------|-------------|-------------|-------------|-------------|-------------|----------------------------|
| CIFAR-10C    |             |             |             |             |             |             |             |             |      |             |             |             |             |             |             |                            |
| Source       | 28.8        | 22.9        | 26.2        | 9.5         | 20.6        | 10.6        | 9.3         | 14.2        | 15.3 | 17.5        | 7.6         | 20.9        | 14.7        | 41.3        | 14.7        | 18.3                       |
| CoTTA        | 12.9        | <u>13.8</u> | 12.0        | <u>9.1</u>  | 14.3        | 9.2         | <u>9.2</u>  | <u>12.0</u> | 10.0 | 12.1        | <u>7.0</u>  | <u>14.3</u> | <u>14.1</u> | 9.9         | 12.7        | $\underline{11.5} \pm 0.1$ |
| ActMAD       | <u>13.3</u> | 11.6        | 15.7        | 8.7         | 16.7        | <u>9.9</u>  | 8.3         | 10.5        | 10.0 | <u>12.8</u> | 6.9         | 10.6        | 13.3        | 9.9         | <u>13.4</u> | <b>11.4</b> $\pm 0.1$      |
|              |             |             |             |             |             | CI          | FAR-1       | 00C         |      |             |             |             |             |             |             |                            |
| Source       | 65.7        | 60.1        | 59.1        | 32.0        | 51.0        | 33.6        | 32.4        | 41.4        | 45.2 | 51.4        | 31.6        | 55.5        | 40.3        | 59.7        | 42.4        | 46.8                       |
| CoTTA        | <u>40.8</u> | <u>39.2</u> | 40.8        | 29.9        | 40.9        | 30.7        | 29.8        | <u>35.9</u> | 34.9 | <u>43.4</u> | 26.9        | <u>38.2</u> | 36.6        | 30.9        | 36.8        | <b>35.7</b> $\pm 0.4$      |
| ActMAD       | 39.6        | 38.3        | <u>41.4</u> | <u>31.8</u> | <u>41.7</u> | <u>32.7</u> | <u>30.9</u> | 34.6        | 33.6 | 42.9        | <u>27.4</u> | 36.3        | <u>37.2</u> | <u>31.9</u> | <u>38.6</u> | $\underline{35.9} \pm 0.5$ |

Table 5. Top-1 Classification Error (%) for all corruptions in CIFAR-10/100C (level 5), while continuously adapting to corruptions. Lower is better. These results were obtained by adapting a **Wide-ResNet-40-2 backbone**, trained on CIFAR-10/100, to CIFAR-10/100C. ActMAD results are averaged over 10 runs, and we report the mean error and its standard deviation. The lowest error is shown in bold, the second best is underlined.

| TENT | EATA | ActMAD | TENT+ActMAD | EATA+ActMAD |
|------|------|--------|-------------|-------------|
| 67.2 | 64.9 | 66.0   | 64.1        | 62.7        |

Table 6. Top-1 Error (%) averaged over 15 corruptions in the ImageNet-C dataset while adapting an ImageNet pre-trained ResNet-18 from PyTorch model zoo.

| CFA | DUA | TENT | SHOT | TTT++ | ActMAD | ActMAD |
|-----|-----|------|------|-------|--------|--------|
| 5.3 | 2.1 | 5.2  | 6.1  | 6.8   | 5.8    | 5.2    |

Table 8. Total runtime (seconds) for CIFAR-10C, batch size 128 (see Table 1, main paper). ActMAD<sup>affine</sup> results are provided in Table 7, main paper.

adaptation on this backbone. Results for this experiment (highest severity) are provided in Figure 3. We find that Act-MAD decreases the error significantly even for an already robust model. For example, the Source (without adaptation) top-1 error (%) over the 15 corruptions on ImageNet-C is 61.1%, while after ActMAD adaptation the error decreases to merely 43.5%. Furthermore, we also see that while applying ActMAD to a robust model, the decrease in performance with decreasing batch size is also minimal (similar to the ablation study in the main manuscript, Figure 4, with ResNet-18 backbone). For example, while decreasing the batch size from 125 to 10, the error increases by only 4.1%.

### **3.3.** Lower Severity Results

In the main manuscript we provide results for the highest severity (Level 5) in the Robust Bench [9]. Our ActMAD achieves impressive gains in performance even for lower severity levels. In Table 1 and Table 2 we provide the mean and standard deviation of results (over 10 random runs) obtained by ActMAD on lower severities (*i.e.* Levels 4 - 1) on CIFAR-10/100C. We use the Wide-ResNet-40 model for these evaluations. Furthermore, in Table 3, we provide the

|                       | Source-only | MemCLR | ActMAD |
|-----------------------|-------------|--------|--------|
| mean Avg. Prec. (mAP) | 25.2        | 29.8   | 34.5   |

Table 7. Mean Average Precision (mAP@50) for a Faster R-CNN pre-trained on the Cityscapes dataset and adapted to the FoggyCityScapes test split.

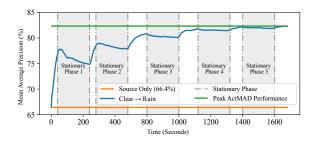



Figure 4. Mean Average Precision (mAP@50) for ActMAD adaptation from KITTI-Clear  $\rightarrow$  KITTI-Rain for a simulated scenario where the car is assumed to be stationary. The gray patches represent the randomly chosen 'stationary' intervals.

mean and standard deviation of results over 10 random runs on the large scale ImageNet-C (with ResNet-18) dataset for lower severities (Levels 4 - 1). The results show that ActMAD can even be applied when the distribution shift between the train and test data is not too large.

# 3.4. Vision Transformer

ActMAD can also be seamlessly applied to the Vision Transformer backbone. In the main manuscript we provide mean results over the 15 corruptions for CIFAR-10/100C (Level 5). For reference, in Table 4 we provide results for each individual corruption for the highest severity in the CIFAR-10/100C. Additionally, we also provide ActMAD results for the highest severity on the ImageNet-C benchmark.

#### **3.5.** Continuous Adaptation to Perturbations

In the main manuscript (Table 4) we compare with CoTTA [27] on their continuous adaptation benchmark and provide the mean error over the 15 corruptions (highest severity) in the CIFAR-C benchmark. In Table 5 we provide detailed results, averaged over 10 random runs, for each individual corruption for documentation purposes.

### 4. Additional insights

Here, we provide comparisons with EATA [17] (for image classification) and MemCLR [25] (for object detection), and test ActMAD in more realistic scenarios.

### 4.1. Comparison with additional baselines

**Image Classification:** In Table 6 we compare our Act-MAD with two other entropy based methods, EATA [17] and TENT [26]. For these results, an ImageNet pre-trained ResNet-18 is adapted to ImageNet-C. We see that the recent state-of-the-art method for the entropy based adaptation EATA, outperforms ActMAD. However, we find that the logit-level supervision provided by EATA and TENT is complementary to the test-time supervision provided by Act-MAD. Thus, combining the entropy based objectives with activation distribution matching objective from ActMAD, results in substantial performance gains. It is also worth highlighting, that EATA (like TENT) is also reliant on minimizing the entropy of the output distribution for test-time adaptation, rendering it unsuitable for application to regression tasks (e.g. Object Detection). Whereas, ActMAD is free from such constraints and is task-agnostic in nature.

**Object Detection:** In Table 7 we compare our ActMAD with MemClr [25]. Our ActMAD outperforms MemCLR comfortably in their evaluation setup. To be comparable with the results reported in their paper, we re-train a Faster-RCNN [20] implemented in the Detectron-2 framework [29] (using their default settings) on the train split of the CityScapes dataset [3]. For TTT, we adapt this pre-trained model to the FoggyCityScapes [21] test split by using a batchsize of 4 and a learning rate of 5e-4.

### 4.2. ActMAD in stationary scenarios

In practice such scenarios can be encountered where a vehicle is stationary for a certain period of time. For example, when a vehicle is parked, it can happen that the sensors (*e.g.*, camera), mounted on the vehicle is recording a similar type of data for the stationary period. Ideally, the test-time training algorithm should not diverge catastrophically while adapting on this similar type of data being recorded. To test ActMAD in such a scenario, we choose random stationary intervals while adapting a YOLOv3 object detector from

KITTI-Clear  $\rightarrow$  KITTI-Rain. To simulate the stationary intervals, we adapt on the same batch of data for this randomly chosen interval. These online adaptation results are plotted in Figure 4. We see that during the stationary intervals, the performance of ActMAD suffers a minor degradation, however, when the diverse batches of data are encountered, ActMAD recovers quickly. In practice, to counter the minor degradation in performance during the stationary intervals, adaptation can be limited to batches with sufficient diversity. One way to achieve this can be to threshold the difference between the statistics of the intermediate activation responses from the batches received in an online manner at test-time.

#### 4.3. Runtime comparison with baselines

Contrary to test-time training approaches (*e.g.* [12, 26]) which only adapt the affine parameters at test-time, ActMAD proposes to optimize the entire parameter vector for test-time training. In order to compare the runtime for adaptation at test-time, we adapt ActMAD and other baselines to a single distribution shift in CIFAR-10C and provide the results in Table 8. The runtimes are on-par for ActMAD and all other approaches, except for DUA (which only adjusts the running mean and variance estimates, without backpropagation).

# References

- Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer Normalization. arXiv, 2016. 4
- [2] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A Simple Framework for Contrastive Learning of Visual Representations. In *Proc. ICML*, 2020. 3
- [3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The Cityscapes Dataset for Semantic Urban Scene Understanding. In *Proc. CVPR*, 2016.
  6
- [4] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In *Proc. ICLR*, 2020. 1, 4
- [5] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets Robotics: The KITTI Dataset. *IJR*, 32(11):1231–1237, 2013. 1
- [6] Shirsendu Sukanta Halder, Jean-François Lalonde, and Raoul de Charette. Physics-based Rendering for Improving Robustness to Rain. In *Proc. ICCV*, 2019. 2
- [7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In *Proc. CVPR*, 2016. 1
- [8] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The Many Faces of Robustness: A Critical Analysis of Out-of-Distribution Generalization. In *Proc. ICCV*, 2021. 1

- [9] Dan Hendrycks and Thomas Dietterich. Benchmarking Neural Network Robustness to Common Corruptions and Perturbations. In *Proc. ICLR*, 2019. 2, 5
- [10] Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret Zoph, Justin Gilmer, and Balaji Lakshminarayanan. Augmix: A simple data processing method to improve robustness and uncertainty. In *Proc. ICLR*, 2020. 1, 2, 4
- [11] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In *Proc. ICML*, 2015. 4
- [12] Takeshi Kojima, Yutaka Matsuo, and Yusuke Iwasawa. Robustifying Vision Transformer without Retraining from Scratch by Test-Time Class-Conditional Feature Alignment. *Proc. IJCAI*, 2022. 6
- [13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In *Proc. ECCV*, 2014. 2
- [14] Yuejiang Liu, Parth Kothari, Bastien van Delft, Baptiste Bellot-Gurlet, Taylor Mordan, and Alexandre Alahi. TTT++: When Does Self-Supervised Test-Time Training Fail or Thrive? In *NeurIPS*, 2021. 3
- [15] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning Transferable Features with Deep Adaptation Networks. In *Proc. ICML*, 2015. 1
- [16] M Jehanzeb Mirza, Jakub Micorek, Horst Possegger, and Horst Bischof. The Norm Must Go On: Dynamic Unsupervised Domain Adaptation by Normalization. In *Proc. CVPR*, 2022. 2, 4
- [17] Shuaicheng Niu, Jiaxiang Wu, Yifan Zhang, Yaofo Chen, Shijian Zheng, Peilin Zhao, and Mingkui Tan. Efficient Test-Time Model Adaptation without Forgetting. In *Proc. ICML*, 2022. 6
- [18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In *NeurIPS*, 2019. 1
- [19] Joseph Redmon and Ali Farhadi. YOLOv3: An Incremental Improvement. arXiv, 2018. 1
- [20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In *NeurIPS*, 2015. 6
- [21] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Semantic Foggy Scene Understanding with Synthetic Data. *IJCV*, 2018.
  6
- [22] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias Bethge. Improving Robustness Against Common Corruptions by Covariate Shift Adaptation. In *NeurIPS*, 2020. 2
- [23] Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-Time Training with Self-Supervision for Generalization under Distribution Shifts. In *Proc. ICML*, 2020. 2

- [24] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance Normalization: The Missing Ingredient for Fast Stylization. arXiv, 2016. 4
- [25] Vibashan VS, Poojan Oza, and Vishal M Patel. Towards Online Domain Adaptive Object Detection. In *Proc. WACV*, 2023. 6
- [26] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully Test-time Adaptation by Entropy Minimization. In *Proc. ICLR*, 2020. 4, 6
- [27] Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai. Continual Test-Time Domain Adaptation. In *Proc. CVPR*, 2022.
  6
- [28] Yuxin Wu and Kaiming He. Group Normalization. In Proc. ECCV, 2018. 1, 4
- [29] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen Lo, and Ross Girshick. Detectron2. https://github. com/facebookresearch/detectron2, 2019. 6
- [30] Sergey Zagoruyko and Nikos Komodakis. Wide Residual Networks. In Proc. BMVC, 2016. 1