
A. Summary
We provide details of our proposed refinement process

in Appendix B. In Appendix C, additional details about
our implementation are provided for reproducibility. Ap-
pendix D contains further qualitative experiments showing
the visual performance of our multiview segmentation and
inpainting methods. We also provide a supplementary video
and a website with video renderings of the scenes with and
without inpainting for better visualization. In Appendix E,
we provide an ablation study measuring the impact of ad-
ditional training stages to segmentation performance. Ap-
pendix F provides an overview of all of the scenes in our
introduced dataset. For completeness, we provide an ex-
tended version of the background on NeRFs in Appendix G.
A detailed version of the segmentation results can be found
in Appendix H. In Appendix I, we discuss potential failure
cases of our model. Finally, due to the generative nature of
inpainting, we provide an ethics statement in Appendix J.

B. Refinement Details
For pixel values that are only visible in some of the

views, we use mask refinement to project them to all of
the input views, as introduced in § 4.2.4 in the main pa-
per. This refinement reduces the masked area and leads
to better inpaintings due to a decreased need for hallucina-
tion. Consider a source image, Is, its corresponding depth,
Ds, and mask, Ms. For each target image, depth, and
mask tuple, (It, Dt,Mt), and for every masked pixel in the
source view, us, we consider the ray passing through us:
rus = ous + tdus . The same sampling approach used in the
original NeRF paper [35] is performed to sample {ti}Ni=1

on ray rus . At the i-th step, the point represented by ti is
projected into the world coordinate system as:

Xi = GsK
�1tius, (10)

where Gs is the source camera pose and K is the camera
intrinsic matrix. Next, point Xi is unprojected into the tar-
get views to determine which pixel in the target view corre-
sponds to us [66]:

ut,i = ⇡(KG�1
t Xi), (11)

where Gt is the camera pose of the target view, and ⇡ stands
for the perspective projection operation. If ut,i is masked in
the target view, ti is ignored and we go to ti+1. If it is not
masked, we check if the depth, Dt(ut,i), is consistent with
the distance of Xi to the target camera. In case of depth in-
consistency, again, ti is discarded and we proceed to ti+1. If
the depths are consistent, the RGB color Is(us) is replaced
with It(ut,i) while unmasking us in the source view. Note
that for refining Ds(us), one cannot directly use Dt(ut,i)
because it is the distance to the source camera. The depth
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Figure 8. A visualization of our proposed mask refinement. The
green pixel depicted in the target view is the final one that is used
to transfer color and depth from the target view to the source view.
Crosses represent the sampled points, and the blue cross is the final
point used for the refinement in this example.

Dt(ut,i) is first projected to the world coordinates similar
to Eq. 10 as:

Xdepth = GtK
�1Ds(ut,i)ut,i. (12)

The distance of Xdepth to the source camera is then used to
replace Ds(us).

For each source image, we visit the target images one by
one; if a pixel is able to be refined with respect to a new
target image, the refinement is performed, and if a previ-
ously refined pixel is able to be refined with a point closer
to the source camera, the refinement is updated. We iterate
our refinement process multiple times, until no pixel is re-
fined. This makes the process independent of the order of
the target views.

Figure 8 shows a toy example to visualize the mask re-
finement process. The unwanted object is the sofa. For a
source and target view, a masked pixel in the source view
is considered, and a ray is passed through this pixel. The
first two sampled points on this ray are still masked when
unprojected into the target view since they fall on the sofa
in the 3D world. The next sampled point is unprojected to
an unmasked pixel on the target view, but the depth is in-
consistent since the target camera sees the basketball from
that pixel. Finally, the blue cross shows the fourth sam-
pled point, where the depth is consistent, and the green pixel
corresponding to the leaves of the tree is used to refine the
source image. The distance of the blue cross to the source
camera is used to replace the source depth. In practice, a
source pixel is refined only if, after the refinement, the new



depth is consistent with at least one of the eight neighbour-
ing pixels in the source view. Figure 9 shows an example
of an image from one of the scenes in our dataset, before
and after refinement. We also provide corresponding masks
to show the effect of our refinement process in reducing the
masked area. Note that, following our other experiments in
the main paper, the mask before refinement is dilated for
five iterations, with a 5⇥ 5 kernel.

C. Additional Details
In practice, �LPIPS and �depth are set to 0.01 and 1, respec-

tively. Our implementation is primarily in PyTorch [39],
except for the encoders and MLP implementation, which
use Tiny Cuda NN [37] for efficiency. The models are
trained on a single Nvidia RTX A6000 GPU. We use the
sparse depth supervision in the unmasked regions of the in-
put views, as in DS-NeRF [10], to obtain more accurate
scene geometries. Following Instant-NGP [3, 38], the
multi-resolution hash encoder used in our NeRF has 16 lev-
els, each returning two features. The base resolution is set
to 16. The MLPs have 64-dimensional hidden layers. The
first MLP, which calculates the density, � (and “Objectness
logit”, s, for multiview segmentation), has two layers, while
the color MLP has three layers. The training images used
for our quantitative experiments have 567⇥1008 pixels (af-
ter being downsized four times to avoid memory issues),
and all are captured by a Samsung Galaxy S20 FE. To calcu-
late the perceptual loss, at each iteration, a random batch of
four views is selected, and for each of them, a patch is ren-
dered and compared to its inpainted counterpart in the per-
ceptual space. Each patch is 16 times smaller than the orig-
inal image in each direction, while the stride for sampling
the patches is set to two to cover larger areas. This makes
the perceptual loss more meaningful, without slowing down
the training. As mentioned in the paper, FID and LPIPS are
calculated only for the bounding box of the masked region.
The mask for test views is rendered using our multiview
segmentation model, because the test views do not contain
the object and can not be manually masked. Since in the
experiments, masks are sometimes dilated, we also expand
each side of the bounding box containing the mask in every
direction by 10% to make sure that in all of the experiments,
the entire hallucinated region is being evaluated. Note that,
for NeRF fitting, the object masks are slightly dilated (for
five iterations with a 5 ⇥ 5 kernel) to reduce the effects of
the shadow of the target objects in the inpainted scene and
to make sure that the mask covers all of the object.

Dataset. All scenes in our dataset are forward-facing,
and obtained by manually moving a camera using an un-
structured trajectory mimicking the behavior of a non-
expert user. We focus on forward-facing scenes due in part
to the fact that the inpainting task is more challenging, due
to a lower chance to see behind objects and thus a need
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Figure 9. Qualitative example of how refinement can reduce the
masked area by substituting pixel values from other views.

for more hallucination compared to 360� scenes. All the
60 + 40 images are jointly processed with Colmap to re-
cover the camera parameters in a shared coordinate system.
Each image is 2268⇥ 4032 pixels in size.

C.1. Approximate Timings
In Table 5, we provide the approximate times that each

stage in our framework takes. We use a similar architec-
ture to Instant-NGP [38], which yields fast convergence for
our models. Note that the semantic NeRF typically con-
verges to an acceptable geometry even half-way through
the fitting iterations, and the remaining iterations are mostly
for obtaining a sharp appearance. Since our segmentation
and inpainting approaches only use the rendered masks and
depths from the semantic NeRF, according to the applica-
tion, one can trade off quality for speed, and early stop the
semantic NeRF to further reduce the segmentation time. For
fitting the inpainted NeRF, since we have to render mul-
tiple patches and calculate the perceptual loss for each of
them, the entire process is slower than the segmentation
part. However, according to the fitting times in the litera-
ture, this is still a fast NeRF manipulation model for real-
istic scenes. Note that all of these times can be reduced in
the future with faster hardware and underlying models, e.g.,
better differentiable scene representations.

D. Additional Qualitative Results
Here, we provide additional qualitative examples to

show the effectiveness of our multiview segmentation and
multiview inpainting methods. Figure 10 is an extended
version of Figure 6, and shows four additional qualitative
examples of our view-consistent inpainting approach.

Figure 11 shows an example of a single scene being in-
painted twice, each time with a different part of the scene
being masked. In the upper case, the statue without its con-
crete base is selected and the base is still in the scene af-
ter the inpainting. Notice that parts of the base as well as
parts of the ground behind it were not visible in any of the
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Figure 10. Additional qualitative visualizations of our view-consistent inpainting results, as in Figure 6 in the main paper. Upper rows per
inset show NeRF renderings of the original scene from novel views, with the first image also displaying the associated mask. Lower rows
show the corresponding inpainted view.

Table 5. Approximate times that each of the stages in our
multiview segmentation and multiview inpainting framework
take. These numbers do not include the time spent for human-
annotations.

Stage Name Time
Multiview Segmentation
Interactive Segmentation < 1 second
Video Segmentation < 1 minute
Fitting the Semantic NeRF 2� 5 minutes
Rendering Training Masks 1 minute
Multiview Inpainting
Applying the Image Inpainter < 1 minute
Fitting the Inpainted NeRF 20� 40 minutes

training views. Our model shows consistent plausible hal-
lucinations, which complete the cylinder shape of the base.
The use of the perceptual loss leads to a sharp texture on the
grass.

We further provide more qualitative results of our mul-
tiview segmentation model. Figure 12 is an extension of
Figure 5, and shows target views from two scenes, the
ground-truth mask in the target views, and the outputs of
NVOS [44], video segmentation [4], and our model with or
without the two-stage training. As evident in the results, our
segmentation model consistently provides coherent masks
with sharp accurate edges (zoom into boxes for examples).

Figure 13 shows additional qualitative comparisons of

our model against NeRF-In [31] on three of the scenes of
our dataset. As visible in the outputs, our models is able to
produce sharper outputs.

E. Multi-Stage Multiview Segmentation
While it has been shown both qualitatively (Figure 5)

and quantitatively (Table 1) that our multiview segmenta-
tion benefits from our proposed two-stage training, Fig-
ure 14 shows that additional training stages do not have
a significant effect on the outputs, and thus, two training
stages are sufficient. Quantitatively, Table 6 shows that our
model with two or three stages of training has similar per-
formance.

F. Our Multiview Inpainting Dataset
Figure 15 contains sample images from our introduced

dataset used in our quantitative evaluations. This dataset
contains 10 real-world scenes and includes different chal-
lenging 3D inpainting segmentation and inpainting scenar-
ios. In the experiments, we use this dataset to provide a
quantitative comparison of our inpainting method against
the baselines, where our approach outperforms other meth-
ods.

G. NeRF: Extended Background
Here, we provide an extended version of the back-

ground on Neural Radiance Fields (NeRFs) for complete-
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Figure 11. A single scene inpainted with two different masks using our multiview inpainting method.
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Figure 12. Qualitative comparison, as in Figure 5 in the main paper, of our multiview segmentation model against Neural Volumetric
Object Selection (NVOS) [44], Video segmentation [4], and the human-annotated masks (GT).

Table 6. Quantitative evaluation of our proposed multiview seg-
mentation with one, two, and three training stages.

# of Stages Acc." IoU"
1 98.85 90.96
2 98.91 91.66
3 98.89 91.53

ness. NeRFs [35] encode a 3D scene as a function, f :
(x, d) ! (c,�), that maps a 3D coordinate, x, and a view

direction, d, to a color, c, and density, �. The function f
can be modelled in various ways, such as a multilayer per-
ceptron (MLP) with positional encoding [35] or a discrete
voxel grid with trilinear interpolation [47], depending on the
application and desired properties. For a 3D ray, r, charac-
terized as r(t) = o+ td, where o denotes the ray’s origin, d
its direction, and tn and tf the near and far bounds, respec-
tively, the expected color is:

C(r) =

Z tf

tn

T (t)�(r(t))c(r(t), d) dt, (13)
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Figure 13. Additional qualitative comparisons of our model
against NeRF-In [31].

where T (t) = exp(�
R t
tn

�(r(s)) ds) is the transmittance.
The integral in Eq. 13 is estimated via quadrature by divid-
ing the ray into N sections and sampling ti from the i-th
section:

bC(r) =
NX

i=1

Ti(1� exp(��i�i))ci, (14)

where Ti = exp(�
Pi�1

j=1 �j�j) and �i = ti+1 � ti is the
distance between two adjacent sampled points. For sim-
plicity, c(r(ti), d) and �(r(ti)) are abbreviated as ci and
�i, respectively. For the rays passing through pixels of the
training views, the ground-truth color, CGT(r), is available,
and the representation is optimized using the reconstruction
loss:

Lrec =
X

r2R
k bC(r)� CGT(r)k2, (15)

where R is a ray batch sampled from the training views.

H. Detailed Segmentation Results
Table 7 shows a breakdown of Table 1 based on forward-

facing and 360� scenes. The inputs to all of the models in
this experiment is a single-view mask, which is to be trans-
ferred to other views. As a result, the task is more chal-
lenging for 360� scenes, due to the need to extrapolate the
single-view mask to further views. Regardless of the differ-
ences in difficulty, our model consistently outperforms the
baselines in both forward-facing and 360� scenarios (Ta-
ble 7).

I. Failure Cases
Since SPIn-NeRF is based on an underlying NeRF and a

2D inpainter, it is prone to the failure cases of these mod-
els; e.g., the image inpainter failing results in the failure of
SPIn-NeRF as well. Moreover, despite the effectiveness of

Table 7. Quantitative multi-view segmentation evaluation for
forward-facing and 360� scenes. See also Table 1.

Forward-Facing 360�

Acc." IoU" Acc." IoU"
Proj. + Grab Cut (2D) 92.19 59.84 89.54 28.09
Proj. + EdgeFlow (2D) 97.63 87.00 95.73 74.10
Semantic NeRF (only source mask) 98.72 90.96 88.90 52.98
Proj. + EdgeFlow + Semantic NeRF 98.74 91.53 95.20 73.35
Feature Field Distillation 98.20 85.61 96.19 79.51
Video Segmentation 98.87 91.38 97.81 84.08
Ours (two-stage) 99.29 94.64 98.37 87.48

the perceptual loss in handling texture-level inconsistencies
between the image priors, potential semantic-level incon-
sistencies can result in failure. For instance, if some in-
painted views contain novel inserted objects in the masked
region (in contrast to simply extending the background to
remove the unwanted object, as our method expects), the
perceptual loss might fail to converge to a meaningful solu-
tion. In particular, as the resulting independently inpainted
patches would not reside nearby in the perceptual metric
space, the NeRF output (attempting to balance between
them) in the masked area would likely be blurry or con-
tain other artifacts. Due in part to this consideration, we
utilize LaMa [48] as our underlying inpainter, as it reduces
the likelihood of this scenario, since LaMa is not a “cre-
ative” inpainter and typically only removes objects. How-
ever, such problematic cases are likely with more creative
inpainters, such as non-deterministic denoising diffusion-
based inpainters.

J. Ethics Statement
There has been a constant debate about 2D generative

models and image manipulation techniques, and the con-
cerns regarding potential misuses. The majority of these
concerns also apply to the new line of 3D generation and
manipulation [41]. In the hands of an adversary, these mod-
els can be utilized to manipulate people’s perception of re-
ality and generate disinformation. Moreover, the fact that
LaMa [48] is used in our implementation results in the in-
heritance of LaMa’s potential undesirable biases in the out-
puts of our 3D inpainter.
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Figure 14. Qualitative comparison of our multiview segmentation model with two-stage and three-stage optimizations. As evident in the
results, three-stage optimization does not lead to a significant improvement over the two-stage fitting.

60 Input Views + Camera Poses Human-Annotated Object Masks 40 GT Views + Camera Poses 60 Input Views + Camera Poses Human-Annotated Object Masks 40 GT Views + Camera Poses

Figure 15. Overview of the 10 different scenes in our introduced dataset for multiview inpainting.
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