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In this document, we provide additional experiments, visualizations, details and insights regarding our Gazeformer model.
The specific sections of this document are listed below.

• We investigate the impact of layer depth and hidden size on model performance (Section 1).

• We discuss a few details about the components of Gazeformer and its training procedure (Section 2).

• We discuss the performance of Gazeformer and other baseline methods under the ZeroGaze setting for target-absent
trials (Section 3).

• We present comprehensive results for model performances under target-absent settings (Section 4).

• We report MultiMatch sub-scores for multiple experiments discussed in the main text (Section 5).

• We present some qualitative examples showcasing Gazeformer’s ability to extend to unknown categories (Section 6).

• We report a comparative analysis of Gazeformer and the baseline methods for the individual COCO-Search18 cate-
gories, both grouped by ZeroGaze and GazeTrain settings (Section 7).

• We show visualizations of the attention maps of our model to explain the contextual effect on visual search (Section 8).

• We also present visualizations of scanpaths and attention maps of our model in both ZeroGaze and GazeTrain settings
(Section 9).

• We showcase comparative qualitative results for Gazeformer and baseline models under the multiple settings discussed
in the main material (Section 10).

1. Impact of Layer Depth and Hidden Size Hyperparameters

Model Configurations Metrics
Nenc Ndec d SS↑ FED↓ NSS↑
6 6 512 0.504 2.072 8.375
3↓ 3↓ 512 0.503 2.078 8.359
6 6 256↓ 0.491 2.167 8.182

Table 1. Performance comparison of the Gazeformer model under the traditional GazeTrain setting for different network depths and hidden
size (d). Nenc denotes the number of encoder layers, Ndec denotes the number of decoder layers. The top row shows the original model
configuration (Nenc = 6, Ndec = 6, d = 512) reported in the main text. ↓ denotes the reduction in the depth or hidden sizes with respect
to the original configuration.

Table 1 shows the results of two ablations under the GazeTrain setting. We reduce the number of layers for both encoder
and decoder blocks from 6 to 3, and in another ablation reduce the hidden size d (dimensionality of hidden states in the

1



transformer layers) from 512 to 256. We observe that reducing the number of encoder/decoder layers or their hidden size (d)
does not considerably change the performance metrics. That being said, we see that higher hidden size d is more important
than layer depth for this task. We choose 6 encoder layers and 6 decoder layers with hidden size (d) 512 to be our Gazeformer
model configuration of choice because it registers slightly superior performance.

2. Additional Architectural and Training Details
Here we present a few additional details about Gazeformer’s architecture and training that were not mentioned in the main

text due to space constraints.

2.1. Image Encoder Backbone

We extract the 2048-dimensional image features from the last convolutional layer of the ResNet-50 [4] backbone (before
the average pooling layer).

2.2. Transformer Encoder

The transformer encoder consists of Nenc stacked standard transformer encoder layers [7]. Each encoder layer adds a
fixed positional embedding as in [1] to the input vector, followed by the application of self-attention, layer normalization and
two consecutive linear transformations to obtain a tensor with the same shape as the input tensor. Note that we apply a ReLU
activation function to the first linear transformation output.

2.3. Transformer Decoder

The transformer decoder consists of Ndec stacked transformer decoder layers [7]. Each decoder layer accepts L fixation
queries as an L × d tensor along with the encoder output. It then applies self-attention, layer normalization, and encoder-
decoder cross-attention and two consecutive linear transformations to obtain a tensor with the same shape as the fixation
queries tensor. The self-attention layer ensures that the fixation embeddings at every decoder layer attend to each other
while the cross-attention layer is responsible for computing attention scores between each fixation time step and the patch
encodings from transformer encoder. Note that we apply a ReLU activation function to the first linear transformation output.

2.4. Disjoint Optimization

The data collected for scanpath prediction task for visual search is unique since multiple trajectories are collected for the
same image with different targets and subjects. Specifically, the training set of COCO-Search18 target-present dataset has
1934 images, but 21622 unique trajectories over various target objects and human subjects. Since the transformer encoder
block only sees image data whereas the decoder and rest of the downstream network sees image and task data for various
subjects, the encoder may overfit while the rest underfits. We also observe that fixation duration predictors and token validity
predictor easily overfit during the training process. Hence, we optimize the model using three disjoint optimizing routines:
one with a smaller learning rate called SlowOpt (for the encoder block and token validity predictor), another with moderate
learning rate called MidOpt (for fixation duration predictor MLP), and one with a larger learning rate called FastOpt (for
the rest of the network). Similar maneuvers can be observed in [5] for a text summarization task. We use three AdamW [6]
optimizers for FastOpt, MidOpt and SlowOpt. We assign learning rate of 1e-6 to SlowOpt, 2e-6 to MidOpt and 1e-4 to
FastOpt. All optimizers share the same weight decay of 1e-4.

2.5. Training details

We use a 24 GB NVIDIA Quadro RTX 6000 GPU to train the model with default hyperparameters. Gazeformer model
variants are trained for a maximum of 200 epochs with batch size of 32. We use a dropout rate of 0.1 for the encoder block
and modality-specific transformations, 0.2 for the multimodal fusion and the decoder block, and 0.4 for the seven MLP
output layers for fixation prediction. We have not performed extensive hyperparameter search and tuning because of resource
constraints and maintained the same hyperparameter across tasks and settings to emphasize scalability and generalizability.

3. ZeroGaze Performance for Target-Absent Search
In this section, we investigate the ZeroGaze generalizability of Gazeformer and other baselines to novel categories in

target-absent search task. Similar to ZeroGaze for target-present trials that we discussed in the main text, models were
trained on target-absent scanpaths corresponding to 17 of the COCO-Search18 categories and tested on the target-absent



SS↑ SemSS↑ FED↓ SemFED ↓ MM CC NSS
w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur ↑ ↑ ↑

IRL [8] 0.307 - 0.356 - 5.278 - 4.909 - 0.782 0.201 3.724
Chen et al. [2] 0.100 0.032 0.134 0.041 5.649 150.243 5.431 149.018 0.721 0.008 0.057
FFM [9] 0.285 - 0.300 - 4.609 - 4.503 - 0.732 0.221 4.842
GazeFormer-noDur 0.362 - 0.412 - 3.889 - 3.622 - 0.839 0.322 4.547
GazeFormer 0.360 0.348 0.409 0.395 3.807 14.776 3.548 13.895 0.840 0.319 4.539

Table 2. Performance comparison for models trained with target-absent data and tested on target-absent data under the ZeroGaze setting.
The best performance for each metric is highlighted in bold.

scanpaths of one left-out category in a cross-validation manner. The results are in Table 2. Similar to ZeroGaze results
on target-present data, Gazeformer outperforms other baselines significantly in almost all metrics. We also observe that
compared to its performance when it has been trained on a test category’s target-absent scanpaths (see Table 2 in main text),
Gazeformer’s performance decreases by only 4% when it has not been trained on that category’s target-absent scanpaths.
This is considerably less when compared to what we observed in the case of target-present data (26% decrease between
GazeTrain and ZeroGaze performance). We posit that this is because in target-absent scenario there is less target guidance
(less target-related features in the image) and human eye-movements become more explorative and free-viewing like, which
makes the generalization to predicting fixations searching for a new target category less hard.

4. Target-Absent Performance Comparisons

SS↑ SemSS↑ FED↓ SemFED ↓ MM CC NSS
w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur ↑ ↑ ↑

Human 0.398 0.369 0.436 0.404 5.418 15.142 3.519 14.428 0.838 0.537 6.547
IRL [8] 0.304 - 0.349 - 5.239 - 4.906 - 0.808 0.263 4.033
Chen et al. [2] 0.350 0.330 0.395 0.380 3.349 13.728 3.166 12.872 0.813 0.360 4.356
FFM [9] 0.360 - 0.413 - 3.500 - 3.231 - 0.814 0.310 5.462
GazeFormer-noDur 0.366 - 0.419 - 3.492 - 3.246 - 0.833 0.334 5.080
GazeFormer 0.368 0.356 0.419 0.399 3.417 13.428 3.185 12.708 0.825 0.341 5.563

Table 3. Performance comparison for models trained with target-present data and tested on target-absent data. The best performance for
each metric is highlighted in bold. Performance that exceeds human consistency is underlined.

SS↑ SemSS↑ FED↓ SemFED ↓ MM CC NSS
w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur w/o Dur w/ Dur ↑ ↑ ↑

Human 0.398 0.369 0.436 0.404 5.418 15.142 3.519 14.428 0.838 0.537 6.547
IRL [8] 0.323 - 0.378 - 5.18 - 4.753 - 0.805 0.243 3.887
Chen et al. [2] 0.345 0.323 0.347 0.335 3.323 13.522 3.328 13.317 0.799 0.447 7.244
FFM [9] 0.362 - 0.413 - 3.903 - 3.587 - 0.814 0.289 4.738
GazeFormer-noDur 0.369 - 0.422 - 3.465 - 3.214 - 0.830 0.340 4.918
GazeFormer 0.375 0.361 0.438 0.417 3.631 14.163 3.312 13.119 0.844 0.347 5.136

Table 4. Performance comparison for models trained with target-absent data and tested on target-absent data. The best performance for
each metric is highlighted in bold. Performance that exceeds human consistency is underlined.

We presented comparative results for performances of Gazeformer and other baselines on target-absent task in Table
2 of main text. Here, we present more comprehensive versions of those model comparisons. Table 3 shows results for
models trained on target-present data and tested on target-absent data. Table 4 shows results for the same models trained
on target-absent data and tested on target-absent data. Interestingly, all models, including Gazeformer were able to predict



target-absent search fixations when they were trained only with target-present fixations (as well as when training directly on
target-absent fixations). This implies that the eye movement pattern used by humans in the presence of a target appears even
in the absence of a target to some extent (e.g., searching the counter top to find a microwave), and if the model is trained
with sufficient target-present data, it can be generalized to predict target-absent fixations. Among the models compared,
Gazeformer achieved the best performance in both settings. We attribute this result to the effectiveness of the transformer
encoder to understand and use the scene context. We demonstrate this through attention visualizations in Section 8 and
qualitative model comparisons in Section 10.

5. MultiMatch Sub-scores

MultiMatch
shape direction length position duration

IRL [8] 0.859 0.593 0.847 0.795 -
Chen et al. [2] 0.820 0.543 0.785 0.720 0.207
FFM [9] 0.812 0.561 0.777 0.772 -
GazeFormer-noDur 0.904 0.627 0.871 0.886 -
GazeFormer 0.897 0.603 0.862 0.885 0.718

Table 5. Performance comparison for ZeroGaze setting based on MultiMatch sub-scores.

MultiMatch
shape direction length position duration

Human 0.903 0.736 0.880 0.910 0.658
IRL [8] 0.889 0.691 0.869 0.881 -
Chen et al. [2] 0.888 0.650 0.835 0.906 0.691
FFM [9] 0.875 0.610 0.867 0.879 -
GazeFormer-noDur 0.905 0.721 0.857 0.914 -
GazeFormer 0.906 0.730 0.859 0.911 0.726

Table 6. Performance comparison for GazeTrain setting based on MultiMatch sub-scores.

MultiMatch
shape direction length position duration

Human 0.915 0.666 0.906 0.864 0.663
IRL [8] 0.901 0.642 0.888 0.802 -
Chen et al. [2] 0.903 0.591 0.891 0.865 0.718
FFM [9] 0.896 0.615 0.893 0.850 -
GazeFormer-noDur 0.926 0.628 0.905 0.871 -
GazeFormer 0.921 0.610 0.898 0.872 0.740

Table 7. Performance comparison for models trained on target-present trials and evaluated on target-absent trials based on MultiMatch
sub-scores.

In Table 1 (ZeroGaze and GazeTrain performances) and Table 2 (Target Absent performances) of the main text, we
reported only averaged MultiMatch scores for shape, direction, length, position, but the metric consists of 5 different sub-
scores. In this section, we present these individual shape, direction, length, position and duration scores for the ZeroGaze
setting (Table 1(a) of main text) and the GazeTrain setting (Table 1(b) of main text) in Table 5 and Table 6, respectively. The
MultiMatch sub-scores corresponding to Table 2 of main text can be found in Table 7 (here, models are trained on target-
present data and evaluated on target-absent data) and Table 8 (here, models are trained on target-absent data and evaluated on
target-absent data). Note that IRL [8] and FFM [9] models and GazeFormer-noDur variant do not predict duration. In every
table 5, 6, 7, 8, best performances are highlighted in bold and performances that exceed human consistency are underlined.



MultiMatch
shape direction length position duration

Human 0.915 0.666 0.906 0.864 0.663
IRL [8] 0.885 0.651 0.870 0.815 -
Chen et al. [2] 0.892 0.590 0.866 0.848 0.630
FFM [9] 0.891 0.644 0.883 0.838 -
GazeFormer-noDur 0.924 0.625 0.903 0.868 -
GazeFormer 0.927 0.663 0.907 0.878 0.743

Table 8. Performance comparison for models trained on target-absent trials and evaluated on target-absent trials based on MultiMatch
sub-scores.

6. Gazeformer’s Extension to Unknown and Unseen Categories

find “couch” find “colander” find “monitor”

find “fireplace” find “stand mixer” find “camera”

Figure 1. Generalization of Gazeformer to unknown categories. Top row shows extensions to non-canonical names of COCO-Search18’s
categories; bottom row shows extensions beyond COCO-annotated categories.

In Fig. 1, we showcase more qualitative examples of Gazeformer’s ability to extend to multiple categories in-the-wild
without use of any prior training data of that category. Gazeformer easily finds COCO-Search18 categories when non-
canonical names are used, such as “couch” (instead of “chair”), “colander” (instead of “bowl”) and “monitor” (instead of
“tv”). Gazeformer’s ability to search for novel categories seems even more impressive when asked to search for categories not
in the COCO dataset, such as “fireplace”, “stand mixer” and “camera”. As noted earlier, this ability is nonexistent in previous
scanpath prediction models even though it is crucial for use in the real world where a human might use a non-canonical name
to refer to any arbitrary object for which a detector may not be readily available.

7. Performance Comparison for Individual COCO-Search18 Categories under ZeroGaze and Gaze-
Train Settings

Fig. 2 compares model performance to human ground truth (using Sequence Score) for each of the 18 target categories in
COCO-Search18 under the ZeroGaze setting. Except for three (“car”, “stop sign” and “tv”), Gazeformer produced the most
human-like scanpaths. Fig. 3 compares model performance to human ground truth (using Sequence Score) for each of the 18
target categories under the GazeTrain setting. Gazeformer particularly performed well for toilets and stop signs, which were



bo
ttle bo

wl
car cha

ir
clo

ck cup for
k

key
bo

ard kn
ife

lap
top

micr
ow

av
e

mou
se

ov
en

po
tte

d p
lan

t
sin

k

sto
p s

ign toi
let tv

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50
Se

qu
en

ce
 S

co
re

Gazeformer
Chen et al.
FFM
IRL

Figure 2. Model performance for each individual category under the ZeroGaze setting
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Figure 3. Model performance for each individual category under the GazeTrain setting

among the two easiest COCO-Search18 target categories for humans as well [3].

8. Gazeformer Works Well Because of Context
Why does Gazeformer work so well in predicting search scanpaths? We believe it is largely because of context. The

attention mechanism in the transformer layers, together with a semantic embedding of target objects, enables the model to
learn a meaningful context of the scene and use it to find targets (e.g., learning that forks can often be found on tables next
to plates). One clear test of Gazeformer’s use of context is to observe its performance under target-absent search conditions
when it is trained on target-present scanpaths. This is because context is all that there is to guide search when the target is
absent. This use of context can be seen in visualizations of attention maps, which highlight the image features attended by
Gazeformer at every fixation. Attention maps are generated by first averaging the attention weights from the 8 attention heads
of the final decoder layer’s encoder-decoder cross-attention module, and then expanding these patch-wise attention scores
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Figure 4. Gazeformer uses scene and object context when there is no target, such as finding a place where the target is most likely to
appear, e.g., clock on the wall (top row), fork on the table (middle row), and microwave on the countertop (bottom row). The first column
shows scanpaths generated in each case. The remaining columns show attention maps extracted from the final decoder layer of the model
(see text for more details). Note that in this scenario, Gazeformer is trained on target-present scanpaths and is asked to predict target-absent
scanpaths.

to every pixel in the image and applying Gaussian blur to smooth the maps. Fig. 4 shows representative results. Despite
the model seeing a kitchen scene in each example, it looked at different scene areas depending on the target category, e.g.,
looking for a clock on the wall (top row), a fork on the table (middle row), and a microwave on the counter-top (bottom
row)—a clear sign of it using contextual information about object-scene relationships to search for a target. This contextual
guidance occurs very early in the process of generating scanpath fixations, indicated in the attention maps by the contextually
meaningful regions for each target category attended within the first three fixations.

9. Attention Maps for the GazeTrain and ZeroGaze settings
Here we present scanpaths and corresponding attention maps from Gazeformer for a few test cases in GazeTrain and

ZeroGaze settings. The attention maps are collected from the encoder-decoder cross attention at the last decoder layer (see
Section 8 for details). Figs. 5, 6, 7 correspond to the GazeTrain setting. Figs. 8, 9, 10 correspond to the ZeroGaze setting.



Predicted Scanpath Attention Map for Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Figure 5. Predicted scanpath and attention maps for the first three fixations under the GazeTrain setting for target “sink”. Note that the
model attends to the countertop on its first change in fixation, demonstrating its use of context to guide search.

Predicted Scanpath Attention Map for Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Figure 6. Predicted scanpath and attention maps for the first three fixations under the GazeTrain setting for target “fork”. Despite the
partial visibility of the fork, Gazeformer manages to find it by first attending to the periphery of the plate.



Predicted Scanpath Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Figure 7. Predicted scanpath and attention maps for the first three fixations under the GazeTrain setting for target “knife”. Gazeformer
appears to have learned to attend to objects near the periphery of a plate, and in this example was distracted by the fork.

Predicted Scanpath Attention Map for Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Figure 8. Predicted scanpath and attention maps for the first three fixations under the ZeroGaze setting for target “fork”. The attention
maps show that on the initial fixation, Gazeformer is attending to the periphery of the plate and the tabletop, where the fork “should be”.



Predicted Scanpath Attention Map for Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Figure 9. Predicted scanpath and attention maps for the first three fixations under the ZeroGaze setting for target “sink”. Gazeformer
attends broadly to the countertop where the sink ”should be”, evident in both the scanpath and the attention maps.



Predicted Scanpath Attention Map for Fixation 1

Attention Map for Fixation 2 Attention Map for Fixation 3

Attention Map for Fixation 4

Figure 10. Predicted scanpath and attention maps for the first four fixations under the ZeroGaze setting for target “fork”. Knives were
particularly distracting for Gazeformer in this setting.



10. Qualitative Comparison
This section contains qualitative results for Gazeformer and other baseline methods on GazeTrain, ZeroGaze and two

target-absent settings presented in the main text. We present visualizations for scanpaths corresponding to ZeroGaze setting
(Fig. 11), GazeTrain setting (Fig. 12), target-absent evaluation after training on target-present trials (Fig. 13) and target-absent
evaluation after training on target-absent trials (Fig. 14).

Human Gazeformer (ours) IRL Chen et al. FFM

Figure 11. Comparison of scanpath predictions for Gazeformer and baseline models in the ZeroGaze setting. Targets in the top three rows
are “laptop”, “bowl” and “keyboard”, respectively, with Gazeformer successfully predicting the scanpaths. The bottom row shows a failure
case where the knife distracted Gazeformer from the target “fork”.



Human Gazeformer (ours) IRL Chen et al. FFM

Figure 12. Comparison of scanpath predictions for Gazeformer and baseline models in the GazeTrain setting. Targets in the top three rows
are “bottle”, “car” and “keyboard”, respectively, with Gazeformer successfully predicting the scanpaths. The bottom row shows a failure
case where the glass jar distracted Gazeformer from the target “cup”.

Human Gazeformer (ours) IRL Chen et al. FFM

Figure 13. Comparison of scanpath predictions for Gazeformer and baseline models on target-absent trials when trained only on target-
present trials. Targets in the top two rows are “mouse” and “sink”, respectively, with Gazeformer successfully predicting the scanpaths in
target-absent setting, exhibiting context effects as it looks for region next to laptop for “mouse” and countertops for “sink”. The bottom
row shows a failure case where Gazeformer fails to explore outside the confines of the cake while searching for a “bowl”.



Human Gazeformer (ours) IRL Chen et al. FFM

Figure 14. Comparison of scanpath predictions for Gazeformer and baseline models on target-absent trials when trained only on target-
absent trials. Targets in the top two rows are “keyboard” and “microwave”, respectively, with Gazeformer successfully predicting the
scanpaths in target-absent setting, exhibiting context effects as it looks for region next to laptop for “keyboard” and countertops for
“microwave”. The bottom row shows a failure case where Gazeformer fails to explore outside the confines of the bowl of rice while
searching for a “knife”.
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