
Appendix of EC2 : Emergent Communication for Embodied Control

Yao Mu1, Shunyu Yao 2, Mingyu Ding 1, Ping Luo1, Chuang Gan3,4

1The University of Hong Kong 2 Princeton University 3UMass Amherst, 4MIT-IBM Watson AI Lab
ymu, myding, pluo@cs.hku.hk shunyuy@princeton.edu ganchuang@csail.mit.edu

A. Implementation Details of EC2

A.1. Emergent Language Generation

The maximum length of emergent language is set as 10,
and the length of the input video is set as 20. For the videos
whose length is larger than 20, we select a sub-sampled
video that is randomly sub-sampled from the original video,
and the first and last frames of the video remain in the sub-
sampled video. We encode each frame into a 512 dimen-
sion vector by ResNet-50 [1] and send the sequence of em-
bedding into the transformer under GPT [2] framework, as
shown in Listing 1, the transformer generates the logit of
emergent language tokens step by step.

1 def EC_Generation(idx, max_new_tokens, temperature):
2 ec_voc=[]
3 for index in range(max_new_tokens):
4 idx_cond = idx
5 logits = gpt_forward(idx_cond)
6 logits = logits[:, -1, :] / temperature
7 idx_nexts = F.softmax(logits, dim=-1)
8 idx_next = ori_map(idx_nexts)
9 idx_next = torch.unsqueeze(idx_next, 1)

10 idx = torch.cat((idx, idx_next), dim=1)
11 ec_voc.append(idx_nexts)
12 EC = torch.stack(ec_voc,1)
13 return EC

Listing 1. PyTorch-style pseudo-code for EC language generation.

A.2. Pre-training by Masked trajectory Completion

We conduct a trajectory completion task to pre-train the
language model without action labels. Firstly, we randomly
sample a sequence of observations ô = {o1, o2, . . . , oN}
stored in the dataset and map it into latent trajectory τwhole
by encoder gθ which is implanted with ResNet-50 [1] (same
as the encoder used in Emergent language generation).
Same as the video length used in emergent language gen-
eration, in this part, the length is also set as 20. Then we
crop a random segment τseg from the whole latent trajectory
τwhole. The remained trajectory is denoted as τrem, and we
set the length of τrem is 10. The language model fϕ takes
τrem as input and uses either emergent language e generated
by the speaker or natural language l as a prompt to predict
the cropped segment τseg.

A.3. Downstream policy learning for embodied con-
trol tasks

We take the emergent language or natural language as
prompt and the current trajectory τcur as input which con-
tains the current state and 9 historical states (total length
is set as 10). The pre-trained language model outputs the
encoded embodied representation mt. We map mt into ac-
tion space by task-specific MLP layers [3], which is called
the downstream policy network. The downstream policy
network is a 2-layer MLP [3] with hidden sizes [256,256]
preceded by a batch normalization [4] layer. The policy
network takes the concatenation of visual embedding and
proprioceptive data from the environment as input, and pro-
duces an action as output. To train the policy network, a
learning rate of 0.001 is used, along with a batch size of 32
for 20,000 steps training.

A.4. Detailed model architectures

We utilize a GPT-like neural
network as shown in Figure
1, to serve as the foundational
model for both the speaker and
listener in EC generation, as
well as for the pretext task. The
architecture consists of eight
self-attention layers, each with
16 heads and a 512 embed-
ding size, resulting in a total of
25.81 million parameters.

EC Generation Video Selection

Speaker Listener

8 X

Video Embed EC tokens

Pretrain data Finetune data

Figure 1. Detailed
model architecture.

B. Additional Results

To make sure R3M and EC2 receive fair finetuning
data, we conducted additional experiments by finetuning
the pre-trained R3M model on the LoReL dataset [5] and
re-evaluating its performance on the Franka Kitchen task.
From Table 1, we observe the performance of R3M im-
proves slightly by finetuning on LoReL dataset [5], indicat-
ing that, though the usage of the robotic dataset helps, the
main improvement comes from the representation learning

1

method. Our EC2 consistently performs better than fine-
tuned R3M.

Demos Instruction EC 2 (ours) R3M-Finetune R3M

10 Lang 48.4 ± 2.5% 44.6 ±2.3 41.8 ± 2.5%
Video 53.6 ± 2.5% 47.3 ±2.0 45.7 ± 2.4%

25 Lang 59.8 ± 2.5% 57.6 ±1.8 56.0 ± 2.3%
Video 63.2 ± 2.6 % 60.7 ±2.5 58.7 ± 2.0%

Table 1. Performance comparison with finetuned R3M.

C. Details of Evaluation Environments
Franka Kitchen. The goal of the Franka Kitchen [6]

is to interact with the various objects in order to reach the
desired state configuration. The agent can change the po-
sition of the kettle, flip the light switch, open and close
the microwave and cabinet doors, or slide the other cabinet
door. The Franka Kitchen environments used in our paper
are modified from the original environment as the same as
R3M [7]. In order to evaluate the robustness of the learned
policy, we introduced further randomization to the origi-
nal scene by varying the position of the kitchen between
episodes. This made the task more challenging in terms of
both perception and control. In Franka Kitchen, we learn
the tasks of sliding the right door open, opening the left
door, turning on the light, turning the stovetop knob, and
opening the microwave. We additionally provide the lan-
guage instruction for each task. We also provide demonstra-
tion videos for downstream policy learning, which is gener-
ated by training a state-based agent with model-free RL [8].
The state-based trajectories are then replayed and rendered
with image observations. The horizon for all Franka tasks is
50 steps, and the few-shot policy learning experiments use
either 5, 10, or 25 demos. All tasks in the Franka Kitchen
environment come with both proprioceptive data from the
arm joints and gripper positions, as well as visual obser-
vations. The proprioceptive data is concatenated with the
latent features encoded from the visual observations.

MetaWorld. MetaWorld [9] is a simulated benchmark
that includes a shared tabletop environment with a Sawyer
arm, designed to evaluate the robot’s ability to execute var-
ious manipulation tasks involving reaching, pushing, and
grasping. For instance, pushing or grasping an object with
a revolute joint is required for the open door task, while
pushing or grasping an object with a sliding joint is needed
for the open drawer task. The MetaWorld environment fea-
tures several tasks, including assembling a ring onto a peg,
picking and placing a block between bins, pushing a but-
ton, opening a drawer, and hammering a nail. In all tasks,
the target object’s position, such as a drawer, peg, or block,
is randomized between episodes. Additionally, all tasks in-
clude proprioceptive data of the gripper end-effector pose
and gripper open/close, and have specific language instruc-
tions and video demonstrations. Expert data generated us-

ing a heuristic policy is replayed and rendered with image
observations to create the demonstration video and corre-
sponding state-action labels. The horizon for all tasks in
MetaWorld is 500 steps, and the downstream policy learn-
ing experiments use either 5, 10, or 25 demonstrations.

D. Implementation Details of baselines
D.1. BC-Z: Zero-Shot Task Generalization with

Robotic Imitation Learning

BC-Z [10] embeds the language instruction wℓ or video
instruction wh via an encoder q(z|w) into a task embedding
z. For the language instruction, a pre-trained multilingual
sentence encoder [11] is used as the encoder to produce a
512-dim language vector for each task. For video instruc-
tion, the input video w is randomly subsampled from the
original video to be 20 frames long so that the video’s first
and last frame remains in the subsampled w. Moreover, a
convolutional neural network is used to produce the task
embedding z. Using the demonstration video wi

h and cor-
responding state-action sequence labels {(s, a)}i, BC-Z en-
codes the demonstration video zi ∼ q(· | wi

h), then pass the
embedding to the control layer π(a|s, zi), and then back-
propagate gradient of the behavior cloning loss to both the
policy and encoder parameters.

To achieve better semantic alignment between video em-
beddings and language embeddings, BC-Z introduces a lan-
guage regression auxiliary loss to constrain the distance be-
tween language and video embeddings. This loss function
encourages the video encoder to predict the embedding of
the language command for the task using a cosine loss. The
objective of the video encoder can be defined as follows:

min
∑
task i

∑
(s,a)∼Di

e

wh∼Di
h

⋃
Di

e

− log π(a|s, zi)︸ ︷︷ ︸
behavior cloning

+ Dcos(z
i
h, z

i
ℓ)︸ ︷︷ ︸

language regression

,

where zih ∼ q(·|wh)︸ ︷︷ ︸
video encoder

, ziℓ ∼ q(·|wi
ℓ)︸ ︷︷ ︸

language encoder

(1)

where Dcos denotes the cosine distance.
Specifically, BC-Z implements the instruction-

conditioned convolutional neural network using the
FiLM-conditioned ResNet [12] to encourage the model to
use information from the task embedding to infer the task.
FiLM is a technique used in neural networks that enables
them to modify their output by applying an affine transfor-
mation to the intermediate features of the network. This
transformation involves scaling and shifting the feature
statistics based on a conditioning input, which can be any
relevant information that can help the network make better
predictions, such as class labels, attribute values, or textual
descriptions. By modulating the features in this way, FiLM

prompts the network to focus on different aspects of the
input, resulting in more diverse and informative outputs.
All the hyper-parameters are implemented as same as the
officially published repo1. And both BC-Z and EC2 were
trained with the same LoRel dataset [5].

D.2. R3M: A Universal Visual Representation for
Robot Manipulation

We use the visual encoder Fϕ pre-trained by
R3M [7], which is implemented by ResNet-50 [1] in
torchvision.models. The pre-trained R3M model is
trained for 1.5 million steps with a learning rate of 1e-4,
and is officially released at their website 2.

R3M performs time contrastive learning, video-language
alignment, and embedding regularization to capture effec-
tive representations from demonstration videos and lan-
guage descriptions. Given a batch of videos, R3M trains
the visual encoder to produce a representation such that
the distance between images closer in time is smaller
than for images farther in time or from different videos.
Specifically, we sample a batch of sequences of frames
[Ii, Ij>i, Ik>j]

1:B , then minimize the InfoNCE loss [13]:

Ltcn = −
∑
b∈B

log
eS(zbi ,z

b
j)

e
S(zbi ,z

b
j) + eS(zbi ,z

b
k
) + eS(zbi ,z

̸=b
i)

(2)

where z is the encoded representation, and z ̸=b
i is a negative

example sampled from a different video in the batch. S is
the measure function of similarity, which is implemented as
the negative L2 distance S(x1, x2) = −||x1 − x2||22. To
encourage the visual encoder to capture semantically rele-
vant features, R3M adds a video-language alignment loss
and trains a model Gθ(Fϕ(I0),Fϕ(Ii), l) that takes in an
initial image I0, a future image Ii, language l and outputs
a score corresponding to if transitioning from I0 to Ii com-
pletes the language l. Specifically, R3M samples a video
clip and paired language [Ii, Ij>i, l]

1:B , and then trains for
this objective directly with a contrastive loss, that is:

Llang = −
∑
b∈B

log
e
Gθ(zb0,zbj>i,l

b)

e
Gθ(zb0,zb

j>i
,lb)

+ eGθ(zb0,zb
i
,lb) + e

Gθ(z
̸=b
0 ,z

̸=b
j>i

,lb)

(3)

where z ̸=b is a negative example sampled from a different
video in the batch that does not match the language instruc-
tion lb. Furthermore, R3M encourages sparse and compact
representations to benefit embodied control, particularly in
low-dimension imitation learning. R3M learns the visual
encoder with a simple L1 and L2 penalty to reduce the ef-
fective dimensionality of the state space.

The total objective of R3M is the weighted sum:

L(ϕ, θ) = E
I1:B
0,i,j,k

∼D
[λ1Ltcn+λ2Llang+λ3||Fϕ(Ii)||1+λ4||Fϕ(Ii)||2]

(4)

1https://sites.google.com/view/bc-z/home
2https://github.com/facebookresearch/r3m

During the evaluation of downstream embodied control
tasks, for embodied control with demonstration video in-
struction, we use the officially released vision encoder to
extract features of every frame in the video and map them
into the instruction representation by one MLP layer. For
embodied control with natural language instruction, we use
the language encoder of the officially released pre-trained
model to encode the natural language.

References
[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 3

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020. 1

[3] Hassan Ramchoun, Youssef Ghanou, Mohamed Ettaouil,
and Mohammed Amine Janati Idrissi. Multilayer perceptron:
Architecture optimization and training. 2016. 1

[4] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 1

[5] Suraj Nair, Eric Mitchell, Kevin Chen, Silvio Savarese,
Chelsea Finn, et al. Learning language-conditioned robot
behavior from offline data and crowd-sourced annotation. In
Conference on Robot Learning, pages 1303–1315. PMLR,
2022. 1, 3

[6] Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey
Levine, and Karol Hausman. Relay policy learning: Solving
long-horizon tasks via imitation and reinforcement learning.
arXiv preprint arXiv:1910.11956, 2019. 2

[7] Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea
Finn, and Abhinav Gupta. R3m: A universal visual
representation for robot manipulation. arXiv preprint
arXiv:2203.12601, 2022. 2, 3

[8] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations. arXiv preprint
arXiv:1709.10087, 2017. 2

[9] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian,
Karol Hausman, Chelsea Finn, and Sergey Levine. Meta-
world: A benchmark and evaluation for multi-task and meta
reinforcement learning. In Conference on robot learning,
pages 1094–1100. PMLR, 2020. 2

[10] Eric Jang, Alex Irpan, Mohi Khansari, Daniel Kappler, Fred-
erik Ebert, Corey Lynch, Sergey Levine, and Chelsea Finn.
Bc-z: Zero-shot task generalization with robotic imitation
learning. In Conference on Robot Learning, pages 991–
1002. PMLR, 2022. 2

[11] Yinfei Yang, Daniel Cer, Amin Ahmad, Mandy Guo, Jax
Law, Noah Constant, Gustavo Hernandez Abrego, Steve
Yuan, Chris Tar, Yun-Hsuan Sung, et al. Multilingual uni-
versal sentence encoder for semantic retrieval. arXiv preprint
arXiv:1907.04307, 2019. 2

[12] Ethan Perez, Florian Strub, Harm De Vries, Vincent Du-
moulin, and Aaron Courville. Film: Visual reasoning with a
general conditioning layer. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32, 2018. 2

[13] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 3

	. Implementation Details of EC2
	. Emergent Language Generation
	. Pre-training by Masked trajectory Completion
	. Downstream policy learning for embodied control tasks
	. Detailed model architectures

	. Additional Results
	. Details of Evaluation Environments
	. Implementation Details of baselines
	. BC-Z: Zero-Shot Task Generalization with Robotic Imitation Learning
	. R3M: A Universal Visual Representation for Robot Manipulation

