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Appendix

A. Theoretical Analysis
In the main text, we have empirically shown the observa-

tions that for an infected model, the features of adversarial
examples x̃′ are very similar to the features of triggered im-
ages xt, which results in that x̃′ is highly likely classified
as the target-label l instead of any other classes. In this sec-
tion, we take a linear classification model as an example to
theoretically justify that our observation does make sense.

A.1. Structure of Infected Model W ∗

Let (xi, yi), (i = 1, . . . , n) be the training examples,
where xi ∈ Rd and yi ∈ [K]. Let nj , j ∈ [K] be the
number of instances in class Cj . All the training examples
are well normalized, i.e. |xi| = 1, i ∈ [n]. We assume all
the training instance xi living a subspace Sm ⊂ Rd of m
dimension, with m < d. For the simplicity of our analysis,
we assume the trigger embedding function Trigger() is to
add a pre-defined patch P to an input image, i.e.,

xt = Trigger(x) = x+ P (1)

Since the image patch P ∈ Rd introduced is very dif-
ferent from most training examples {xi}ni=1, it is safe to
assume that P is orthogonal to Sm. In the backdoor attack,
we randomly sample ℓ examples from class Cl, and embed
the trigger P into them. Thus, the infected linear classi-
fiers, denoted by W = (w1, w2, . . . , wK), are obtained by
solving the following optimization problem

W ∗ = argmin
W∈Rd×K

F(W ) (2)

where

F(W ) = − 1

n

n∑
i=1

log
exp (⟨wyi

, xi⟩)∑K
j=1 exp (⟨wj , xi⟩)

+
λ

2
|W |2F (3)

Define W̃ ∗ be the solution, with each column vector re-
stricted to the subspace Sm, that minimizes F(W̃ ), i.e.

W̃ ∗ = argmin
W̃∈A

F(W̃ ) (4)

where

A =
{
W̃ ∈ Rd×K : W∗,j ∈ Sm, j ∈ [K]

}
Obviously, W̃ ∗ can be regarded as the benign model, which
is trained with clean images instead of triggered images.
The following lemma characterizes the structure of the op-
timal solution W ∗ obtained from (2).

Lemma 1. Rewrite W ∗ = W ∗
∥ + W ∗

⊥, where W ∗
∥ is the

projection of column vectors in W ∗ into the subspace Sm.
We have

|W ∗
∥ − W̃ ∗| ≤ ℓ|P |2√

2λ

and W ∗
⊥ = Pu⊤, where u ∈ Rd, with uj ≤ 0 for j ̸= l and

ul ≥
(
√
2− 1)ℓ|P |2√

2λ

Proof. Due to the presence of regularizer λ|W |2F /2, it is
easy to see that the optimal solution W ∗ can be written as
W ∗ = W ∗

∥ + Pu⊤, with W ∗
∥ being the projection of W ∗

into the subspace Sm. It is also easy to show that ul ≥ 0
and uj ≤ 0, j ̸= l by simply checking out the derivative of
the objective function with respect to uj and ul.

We construct the upper bound for F (W ∗). To this end,
we restrict the solution to the form of W̃ + γPel, where
el is a binary vector with all its elements being zero except
for the l-th element. The resulting optimization problem is
given by

min
W̃∈A,γ≥0

−ℓ|P |2γ +
λ

2
γ2 + F(W̃ )

The resulting solution is W1 = W̃ ∗ + γPel, with γ =

ℓ|P |2/λ, and optimal value is F(W1) = F(W̃ ∗) −
ℓ2|P |4/[2λ]. Evidently, we have

F(W ∗) ≤ F(W̃ ∗)− ℓ2|P |4

2λ
(5)

We then proceed to construct the lower bound for F(W ∗).
Define u′ = max{|uj | : j ̸= l}. Since for each training
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xi in the class Cl that is triggered with P , its negative log-
likelihood is bounded as

− log
exp (⟨wl, xi⟩)∑K
j=1 exp (⟨wj , xi⟩)

≥ −(ul + u′)|P |2−

log
exp (⟨w̃l, xi⟩)∑K
j=1 exp (⟨w̃j , xi⟩)

(6)

where w̃j ∈ Sm, j ∈ [K]. As a result, we have the
following lower bound for F(W ∗), i.e.

min
W̃∈A,ul,u′≥0

−ℓ|P |2(ul + u′) +
λ

2
(|ul|2 + |u′|2) + F(W̃ )

which can be further simplified as

min
W̃∈A,γ≥0

−ℓ|P |2γ +
λ

4
γ2 + F(W̃ )

By solving the above optimization problem, we have
F(W ∗) lower bounded as

F(W ∗) ≥ F(W̃ ∗)− ℓ2|P |4

λ
(7)

Using the upper and lower bounds from (5) and (7), we have

F(W1)−F(W ∗) ≤ ℓ2|P |4

2λ

Since F(W ) is λ-strong convex, we have

|W1 −W∗|2 ≤ ℓ2|P |4

2λ2

The lemma will then directly follows from the above in-
equality.

The above lemma tells us that for the infected model
W ∗, its component W ∗

∥ is not too far from the benign
model W̃ ∗, while the residual component W ∗

⊥ will give a
strong response to the trigger P . It means that planting a
backdoor into a model will not strongly affect the model’s
performance on benign images, but will significantly affect
its predictions on triggered images.

In addition, this lemma tell us the interesting role played
by ℓ, the number of instances sampled from class Cl to be
triggered by P : a larger ℓ will lead to a larger value of ul,
indicating a stronger footprint of pattern P implemented in
the lth classifier; but, at the same time, a larger ℓ will lead to
a larger value |W ∗

∥−W̃∗|, implying a distortion in classifica-
tion models. Hence, an appropriate choice of ℓ should result
in a small distortion in the overall classification model, and
at the same time, a strong enough backdoor attack of trigger
P in the classification model for class Cl.

A.2. Structure of Perturbation r

After analyzing the structure of the solution learned from
triggered examples, we proceed to analyze the perturbation
r learned from adversarial attack by solving the following
optimization problem

r = max
|r|≤δ

Ł(r) (8)

where

Ł(r) =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

min
j ̸=k

fk(xi + r)− fj(xi + r) (9)

In the above, we introduce δ ≪ 1 to specify the magnitude
of perturbation, and fj(·) for the classification model for the
j-th class. The underlying logic is to find a small perturba-
tion r that will make the deep model predict class Cl for
every instance.

To simplify our analysis, we assume that the original
training examples (without any trigger) can be perfectly
classified with margin τ > 0, i.e.

τ = min
i∈[n]

min
j ̸=yi

⟨w̃∗
yi
− w̃∗

j , xi⟩

We assume that τ is large enough such that a small pertur-
bation made to W̃ ∗ will not affect classification result, i.e.

τ ≥
√
2ℓ|P |2

λ
(10)

We finally assume δ is small enough, i.e.

δ ≤ τ/2

minj ̸=l |w̃∗
l − w̃∗

j |+ ℓ|P |2/[
√
2λ]

(11)

Theorem 1. Under the assumptions in (11) and (10), we
have r⊥, the projection of r on the direction of P , bounded
as

|r⊥|
|r|

≥ (
√
2− 1)ℓ|P |2√

(
√
2− 1)2ℓ2|P |4 + (ℓ|P |2 + 2K/(exp(τ) +K))
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Proof. Now, we consider the adversarial training by maxi-
mizing Ł(r), which is given as

Ł(r) =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

min
j ̸=l

⟨w∗
l − w∗

j , xi + r⟩

Under the assumptions in (10) and (11), we can rewrite Ł(r)
as

Ł(r) =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

⟨w∗
l − w∗

yi
, xi + r⟩ (12)



This is because, according to the definition of classification
margin τ , we have, for any instance xi with yi ̸= l,

⟨w̃∗
yi
− w̃∗

j , xi⟩ ≥ τ, ∀j ̸= yi

Since∣∣∣w∗
∥,yi

− w∗
∥,j −

(
w̃∗

yi
− w̃∗

j

)∣∣∣ ≤ |W ∗
∥ − W̃ ∗| ≤ ℓ|P |2√

2λ

using the condition in (10), we have, for any instance xi

with yi ̸= l,

⟨w∗
∥,yi

− w∗
∥,j , xi⟩ ≥

τ

2
, ∀j ̸= yi

Since w∗
j = w∗

∥,j + ujP and P ⊥ xi for any yi ̸= l, we
have, for any xi with yi ̸= l

⟨w∗
yi
− w∗

j , xi⟩ ≥
τ

2
, ∀j ̸= l

Since

|w∗
yi
− w∗

j | ≤ |w̃∗
yi
− w̃∗

j |+
ℓ|P |2√
2λ

, ∀j ̸= yi

using the condition in (11), we have

⟨w∗
yi
−w∗

j , r⟩ ≥ −
(
|w̃∗

yi
− w̃∗

j |+
ℓ|P |2√
2λ

)
δ ≥ −τ

2
, ∀j ̸= yi

As a result, for any xi with yi ̸= l, we have

⟨w∗
yi
, x+ r⟩ ≥ ⟨w∗

j , x+ r⟩, ∀j ̸= yi

and therefore

min
j ̸=l

⟨w∗
l − w∗

j , xi + r⟩ = ⟨w∗
l − w∗

yi
, xi + r⟩

which leads to the expression in (12). We then proceed to
simplify the expression in (12)

Ł(r) =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

⟨w∗
l − w∗

yi
, xi + r⟩

=
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

⟨w∗
∥,l − w∗

∥,yi
+ (ul − uyi

)P, xi + r⟩

=
⟨P, r⟩∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

(ul − uyi
) +

1∑n
i=1[yi ̸= l]

∑
i:yi ̸=l

⟨w∗
∥,l − w∗

∥,yi
, xi + r⟩

Write r = r⊥ + r∥, where r∥ is the projection of r into the
subspace Sm. Using these notation, we have

Ł(r) =
⟨P, r⊥⟩∑n
i=1[yi ̸= l]

∑
i:yi ̸=l

(ul − uyi)

+
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

⟨w∗
∥,l − w∗

∥,yi
, xi + r∥⟩

(13)

Define

α =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

(ul − uyi
),

v =
1∑n

i=1[yi ̸= l]

∑
i:yi ̸=l

w∗
∥,l − w∗

∥,yi

(14)

We have

r⊥| =
α|P |δ√

α2|P |2 + |v|2
(15)

Since ul ≥ (
√
2− 1)ℓ|P |2/[

√
2λ] and uj ≤ 0 for j ̸= l, we

hve

α ≥ (
√
2− 1)ℓ|P |2√

2λ
(16)

To bound |v|, we use the first order condition for the optimal
solution W̃ ∗, i.e.

w̃∗
j =

1

λ

n∑
i=1

(
[yi = j]

(
1− p(yi|xi; W̃

∗)
)

− [yi ̸= j]p(j|xi; W̃
∗)xi

(17)

where

p(j|xi; W̃
∗) =

exp
(
⟨w̃∗

j , xi⟩
)

∑K
j′=1 exp

(
⟨w̃∗

j′ , xi⟩
)

Using the definition of classification margin, we have

1− p(yi|xi; W̃
∗) ≤ K

exp(τ) +K

and
p(j|xi; W̃

∗) ≤ 1

exp(τ) +K

As a result, we have

|w̃∗
j | ≤

K

λ(exp(τ) +K)

and

|w∗
∥,l − w∗

∥,j | ≤ |w̃∗
l − w̃∗

j |+
ℓ|P |2√
2λ

≤ 1

λ

(
ℓ|P |2√

2
+

K

exp(τ) +K

) (18)

We complete the proof by plugging the bounds from (16)
and (18) into the expression (15).

From the above theorem, we can see that when project-
ing perturbation r on the direction of trigger P , the pro-
jection r⊥ take an significant part in the full perturba-
tion r. It means that the perturbation r is very similar to
the trigger P , which justify our observations that the ad-
versarial examples x̃′ = x + r are similar to triggered
images xt = x+ P .
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Figure 1. Predicted labels v.s. Target-labels for WaNet attack on
full GTSRB dataset
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Figure 2. WaNet Attack on a subset of ImageNet-1K.
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Figure 3. Blend Attack on CIFAR-10 with the ‘dog’ trigger.

(a) hello kitty (b) dog

Figure 4. Two different trigger images for Blend attack.

B. Predicted labels v.s. Target-labels
B.1. Full GTSRB Dataset

In the main manuscript, due to the limited space we have
shown the prediction results for a subset of GTSRB dataset,
i.e., the GTSRB-sub dataset has 15 classes randomly se-
lected from 43 classes. In this section, we give the pre-
diction results for the full GTSRB dataset containing 43
classes. The Fig.1 shows such results for the WaNet attack
on GTSRB dataset. It is obvious that we have the same ob-
servations, i.e., the adversarial examples are highly likely to
be classified as target-label.

B.2. Large Image Resolution

In the main manuscript, we have evaluated our approach
for images with small image resolutions, such as 32×32
for CIFAR-10. In this section, we randomly sample images
from ImageNet-1K dataset for evaluation, which image size
is 224×224. Specifically, 10 classes are randomly selected
from 1000 classes in ImageNet-1K. Fig.2 indicates that we
have the same observations regardless of what image sizes
are.

B.3. Trigger Image

In the main manuscript, we follow the previous meth-
ods to use a ‘hello kitty’ image (ref to Fig.4a) as the trigger
image for Blend attack. In this section, we show that our ob-
servations hold true regardless of what trigger image is. For
example, take the ‘dog’ image (ref to Fig.4b) as the trigger
image, we still have a similar results, as shown in Fig.3.

C. Similarity of Feature Maps
We give more results for the similarity of features among

benign model’s adversarial examples x̃, infected model’s
adversarial examples x̃′, and triggered samples xt. Figure.7
is an image from ImageNet-1K, which sizes are of 224 ×
224.



Figure 5. The two images are sampled from CIFAR-10, with size of 32× 32, under WaNet Attack
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Figure 6. The two images are sampled from CIFAR-10, with size of 32× 32, under BadNet Attack.

Figure 7. Two images are sampled from ImageNet-1K, with size of 224× 224, under Blend Attack.
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