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1. Surface Normal from Events
In this section, we describe the details for surface nor-

mal estimation from polarizer images. We then extend this
knowledge to estimate surface normals from events.

1.1. Basics of Shape-from-Polarization (SfP)

Intensity change at ϕpol can be expressed as:

I(ϕpol) =
Imax + Imin

2
+
Imax − Imin

2
·cos(2(ϕpol−ϕ)), (1)

where Imin and Imax represent the minimum and max-
imum magnitude seen through the polarizer respectively
[4, 7]. This equation can be expressed in terms of the mag-
nitude of the light Iun and the proportion of polarized com-
ponent ρ (also known as degree of polarizer) as follows:

I = Imax + Imin (2)

ρ =
Imax − Imin

Imax + Imin
(3)

Lastly, ϕ is the angle of the linearly polarized component
which corresponds to the phase shift of the sinosoid. [7].
Estimating these three parameters forms the crux of shape-
from-polarization techniques [9]. These quantities can be
estimated from images captured at 4 different polarization
angles as follows:

Iun =
I[0] + I[π/4] + I[π/2] + I[3π/4]

2
(4)

ρ =

√
(I[0]− I[π/2])2 + (I[π/4]− I[3π/4])2

Iun
(5)

ϕ =
1

2
· arctan I[π/4]− I[3π/4]

(I[0]− I[π/2]
(6)

To estimate these quantities, minimum 3observations of the
intensity are required. However, increasing the observa-
tions, improves the accuracy of surface normals. To use

12 polarization angles the above quantities can be derived
as follows:

Iun =

i=π∑
i=0

I[i] (7)

Q1 = (I[0]− I[π/2]) (8)
Q2 = (I[π/12]− I[7π/12]) (9)
Q3 = (I[π/6]− I[3π/2]) (10)
U1 = (I[π/4]− I[3π/4]) (11)
U2 = (I[π/3]− I[5π/6]) (12)

U3 = (I[5π/12]− I[11π/12]) (13)
(14)

ρ =

√
Q12 + U12 +Q22 + U22 +Q32 + U32

3 ∗ Iun
(15)

ϕ = 1.5 ∗ (arctan(U1/Q1) (16)
+arctan(U2/Q2)− π/6 (17)
+arctan(U3/Q3)− π/3) (18)

Estimating the surface normals from ρ and ϕ is a mat-
ter of estimating the zenith angle θ and azimuth angle α as
shown in the equations below:

ρdiffuse =
(n− 1

n )
2 sin2 θ

2 + 2n2 − (n+ 1
n )

2 sin2 θ + 4 cos θ
√
n2 − sin2θ

(19)

ρspec =
2n tan θ

tan2 θ sin2 θ + n∗2 (20)

where n denotes the refractive index and θ is the zenith an-
gle. Depending on the type of reflection (diffuse or specu-
lar), the ρ is computed differently. Similarly depending the
type of reflection, the azimuth angle α is ϕ if diffuse reflec-
tion dominates otherwise it is ϕ− π/2:
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1.2. SfP from Events

When estimating surface normals from events, we recon-
struct event intensities (Ie) as explained in the main paper.
Using the above equations, we estimate ρ and θ by first es-
timating event intensities at 12 polarizer angles, The use
of event intensities enables us to use the traditional SfP al-
gorithms to estimation surface normals. Depending on the
type of polarization (specular or diffuse), this can result in
multiple solutions. We observed using the specular solution
results in the lowest angular error. We also used the Smith
et al. [8] baseline with our event intensities. However, this
results in a lower performance as shown in Table 1.

2. Event Representation
When learning surface normals from events, the event

representation have a significant effect on the performance
of the network. In this section, we describe the performance
of 3 kinds of input representations namely: event intensi-
ties (Ie), voxel grid [11], CVGR representation and CVGR-
I representation on the ESfP-synthetic dataset. The event
intensity representation concatenates Ie at polarizer angles
of 15, 60, 105, 150 as input the network. (note, we cannot
use the intensity at 0 angle, since it will always be zero for
all pixels). The CVGR representation builds on top of voxel
grid representation as follows:

E(x, y, b) =

i=b∑
i=0

C · V (x, y, i) =

i=b∑
i=0

C

 ∑
ek∈Ei:

xk=x,yk=y

pk

 .

(21)
Lastly, the CVGR-I representation combines a single image
with events and is expressed as follows:

E(x, y, b) = I[0] +

i=b∑
i=0

C · V (x, y, i) (22)

As can be seen from Table 1, the best performing repre-
sentation is CVGR-I. The main reason for improvement is
because the image gives more context to the network to es-
timate surface normals in the areas where the event infor-
mation is insufficient. Qualitative results on real dataset are
shown in Fig. 1. As can be seen, the events are triggered
prominently on the edge of the vase and are missing from
the front-parallel surface of the vase. The network using
only events has a difficult time to estimate normals on these
front-parallel surfaces. On the other hand, using CVGR-I
representation, the network performs better resulting in a
lower MAE score. Additionally, we also evaluate the ef-
fect of number of bins on the performance of the network.
For the same representation, increasing the number of bins
from 4 to 8 improves the performance by 6% in terms of an-
gular error. Higher number of bins preserves the temporal

Method Dimension Angular Error ↓ Accuracy ↑
Mean AE<11.25 AE<22.5 AE<30

Events (P) [8] 12×H ×W 69.722 0.028 0.067 0.098
Events (P, specular) 12×H ×W 58.196 0.007 0.046 0.095

Event intensities 4×H ×W 39.316 0.147 0.321 0.402
VoxelGrid [11] - 8Bins 8×H ×W 34.232 0.230 0.465 0.556
CVGR - 4Bins 4×H ×W 34.053 0.220 0.494 0.579
CVGR - 8Bins 8×H ×W 32.010 0.248 0.515 0.594
CVGR - 12Bins 12×H ×W 34.655 0.227 0.510 0.596
CVGR-I 8×H ×W 27.953 0.263 0.527 0.655

Table 1. Comparison of event representations: The first two rows
correspond to physics-based baseline. Rest of the rows correspond
to learning-based approaches with different event representations.

Scene [10] Events E (CVGR) E&I
(CVGR-I)

18.06 25.48 19.64

Figure 1. Qualitative comparison of event representation

Low Speed Med Speed High Speed

Figure 2. Comparison on dynamic scenes: The object is rotating
with increasing speeds from left to right. The top row shows the
images captured by the camera. The second row shows the surface
normals estimated by image-based SfP baseline Ba et al. [10] and
last row shows the surface normals estimation by our learning-
based SfP baseline.

information of events better. However, further increasing
the bins to 12 results in a a decrease in performance. This is
because not all bins add new information due to limitation
of contrast threshold.



2.1. Dynamic scenes

An advantage of using event camera is the high temporal
resolution as compared to the frame-based sensor. To high-
light this, we record a dynamic scene. The scene consists
of a rectangular block which is rotating about it’s diagonal
axis with a drill. The speed of the drill could be adjusted to
three increasing levels. As seen in Fig. 2, the images corre-
sponding to three different speeds are shown in the first row.
Increasing the speed introduces motion blur for the standard
camera, which is also reflected in the surface normals (sec-
ond row, high speed). In contrast, event-based SfP methods
(last row) are better than the image-based counterpart, as
can be seen by the sharpness of the edge of the rectangu-
lar block. This is primarily due the high rotation speeds of
the polarizer enabled by the high temporal resolution of the
camera.

3. Dataset
ESfP Synthetic Dataset In this section, we provide de-
tails on the ESfP-Synthetic dataset which we use for eval-
uation. The dataset was generated using publicly available
meshes [2] which consists of over 1000 3D scanned com-
mon household objects. These meshes were textured using
the 25 textures available in this dataset [1]. These textures
provide polarimetric BRDF of real-world materials which
provide accurate polarimetric state information when used
with physically-based simulation such as Mitsuba.

4. Limitations
Our real-world dataset only considers specular objects

such as reflective metallic surfaces. We specifically chose
specular objects as they are the most challenging to obtain
surface normals for. The geometry of objects with diffuse
reflection can be captured easily by methods such as struc-
tured light (SL). Additionally, the intensity changes of dif-
fuse materials when observed with a rotating polarizer is
low compared to specular objects, which the real event cam-
era cannot capture due to a high contrast threshold. There-
fore, capturing events for diffuse materials was not possible
with the current version of event cameras.

5. Effect of speed
Conducting experiments at different rotation speeds of

the polarizer, we observed a slight increase in the perfor-
mance for our method and linked this to the decreasing rel-
evance of nonidealities in the event-camera pixel circuits.
In this section, we provide more details on why an increase
in rotational speed improves the performance. Our analy-
sis is based on additional experiments, general considera-
tions on event-camera circuitry [6] and the technical details
of the Prophesee Gen 4 event camera [3]. The additional
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Figure 3. At low speeds more positive than negative events are
triggered. Towards higher rotation speeds this trend reverses but
the overall number of events per filter rotation decreases visibly.

data we recorded cover rotation speeds between 53 RPM up
to 1,734 RPM and two illumination conditions, 200 lux and
800 lux. In this section, we will use the number of events
triggered on the object per revolution of the polarizer as a
proxy-measure for the quality of the resulting surface nor-
mals.

Ideal Event Camera A key observation stated in the
main paper is that the illumination intensity cancels out in
an idealized event camera model. For a given surface on the
object degree of polarization ρ and polarization angle ϕ, the
event camera observes a sinusoidal intensity profile of the
form

I(t) = Iun(1 + ρ cos(2ωt− ϕ)) (23)

The ideal event-sensor triggers and event when the tem-
poral contrast T (logarithmic intensity change) exceeds
some threshold C [6]. Combining this with (23) yields an
expression which, for an object with illumination indepen-
dent polarization characteristics, only depends on the rota-
tional speed.

T =
d (ln I(t))

dt
=

−2ωρ sin(2ωt− ϕ)

1 + ρ cos(2ωt− ϕ)
(24)

Based on (24), we can see that the number of events trig-
gered per unit time linearly depends on the rotational speed.
By considering only the number of events per rotation, this
dependency is also cancelled out and an ideal event camera
would not show any dependency on the illumination condi-
tion or rotational speed.

Real Event Camera In practice however, we observe that
illumination and rotation speed have an effect on the quality
of the surface normal estimation. To better understand this,
we look at the number of events triggered per rotation of the
polarizer and observe that
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Figure 4. At low rotational speeds and low light conditions the
number of positive events drastically exceeds 0.5 due to the back-
ground rate [5]
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Figure 5. The total number of events (given in thousands) per
rotation of the polarizer decreases at higher speeds and at lower
illumination levels.

1. at low rotation speeds, more positive events are trig-
gered (Fig. 3, Fig. 4),

2. the difference in fraction of positive and negative
events at low RPM becomes more pronounced at lower
illumination conditions (Fig. 4),

3. the number of events per rotation decreases at high ro-
tation speeds (Fig. 5), and

4. at low illumnation conditions, less events are triggered
at a set rotation speed (Fig. 5).

While the ideal event camera model fails to explain those
observations, a more realistic model takes the non-idealities
of the circuitry into account. In [5] the leakage of the reset-
transistor is described as a major source of non-ideality as
it leads to the spurious positive events, thus increasing the
fraction of positive events. Because we consider the num-
ber of events per rotation, slower rotation speeds correspond
to a longer accumulation times and the BG (background
rate) rate corrupts such low-speed measurements stronger
as shown in Fig. 3. This so-called BG rate (background
rate) is illumination dependent [3]. Together with the in-
crease in BG rate at lower light levels [3] (for bright scenes)
this explains observations 1 and 2.

At high rotation speeds the BG rate has negligible in-
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Figure 6. The frequency at which events are triggered on the object
shows a saturation effect due to pixel dead time [5]. This explains
the decrease in event count at high polarzier speeds.
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Figure 7. Acquisition time versus Mean Angular Error (MAE).

fluence. However, a second non-ideality becomes visible:
after triggering an event the pixel needs a certain dead time
until it can trigger the next event. This is typically done to
avoid bus-saturation by a small group of pixels [5]. This ef-
fect is clearly visible when looking at the highest event fre-
quency of pixels on the object (Fig. 6). For an ideal camera
the event-frequency would depend linearly on the rotation
speed as derived in (24). However, the data clearly shows a
saturation effect because pixels can only be triggered with
a limited frequency, around 1 kHz at 800 lux illumination.
In accordance with literature, this maximum frequency de-
creases with decreasing illumination [5], explaining the re-
maining two observations.

In contrast to the ideal event camera model, the output
of a real event-camera is sensitive to illumination and rota-
tional speed of the polarizer. Low speeds increase the BG
rate noise significantly and only medium polarizer speeds
lead to a more even distribution of positive and negative
events. If the speed is increased greatly, the pixel dead time
may start to degrade the result again. This is in accordance
with the results shown in the main paper.



6. Advantage of event camera
Fig. 7 illustrates the advantage of using an event-based

SfP (blue) against frame-based SfP methods (red) using as
metrics the framerate and the Mean Angular Error (MAE).
Image-based approaches focus on maximizing the perfor-
mance; however, they are restricted by the camera’s framer-
ate to 22 fps while reducing the effective resolution from
4MP to 1MP (DoFP approach). On the other hand, our
event-based approach is 3 times faster and pushes the SfP
methods toward higher framerates, without sacrificing the
resolution. This enables the capture of surface normals
of high-speed motion. Unlike high-framerate cameras,
event cameras present a fundamentally new approach to
visual information processing. While a high framerate
camera would capture redundant information resulting in
data bus saturation, an event camera only triggers events
when there is contrast change, resulting in lower band-
width.
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