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A. Overview

This supplementary material presents additional insight
into learning positional uncertainty using differentiable
nonlinear least squares (DNLS). We start by addressing
limitations of our framework in Sec. B. Sec. C gives a
derivation of the residual variance σ2

s for the symmetric
probabilistic normal epipolar constraint (PNEC). We inves-
tigate the unobservabilities of the gradient in Sec. D. The
training and evaluation details are given in Sec. E. We show
further quantitative evaluations in Sec. F and Sec. G. This
includes examples of how the learned covariances move the
minimum around the ground truth and the results on the se-
quences 00-07 of the KITTI [2] dataset. We compare our
learned covariances against error estimates from reprojec-
tion using ground truth poses.

B. Limitations

In this section, we will address limitations of our method,
not mentioned in the main paper due to constrained space.
We learn to estimate the noise distribution of keypoint de-
tectors, using regression on the pose error. The gradient
we use for learning the distribution is restricted to points
in the image that are detected as keypoints. This restrict
our method to learn only on regions of the image with a
high chance of producing keypoints. While we don’t need
uncertainty information for regions without keypoints, this
sparse information flow might reduce generalization capa-
bilities to different datasets. Sparsity if further enhanced
by using RANSAC to filter outliers, removing points that
are too far off. However, we choose to include RANSAC
for our training to obtain better pose estimates for gradients
not dominated by outliers. We tried to mitigate the effect
of overfitting on keypoint positions by cropping the images,
leading to different keypoint positions. Furthermore, our
experiments showed that generalization between KITTI and
EuRoC are possible.
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Figure 1. Approximation of the residual variances. The analyti-
cal approximation given in the main paper accurately models the
true distribution of the residual given a similar setup to the KITTI
dataset.
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Figure 2. Approximation of the residual variances over different
focal lengths. The scale of the variance is correlated with the focal
length. Our approximation is better, the smaller the variance is.
For a focal length similar to the one found in the KITTI dataset,
the relative error is 0.015%.

Fig. 3 and Fig. 4 show examples where our method
performs worse and better than the NEC-LS optimization
based on the estimated covariances. We investigate the key-
points with the highest and lowest reprojection error. As
Fig. 3 shows, our method is not always able to compensate
keypoints on dynamic objects leading to a large rotational
error. The trajectories in Fig. 4 show the improvements our
method is able to achieve compared to NEC-LS.

C. Approximating σ2
s

This section show derives the residual variance from the
bearing vector covariances in both images. Given both bear-
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Figure 3. Left: estimated keypoints with covariances (color-coded ellipses) for examples where our method performs worse than NEC-LS.
Good (▼) and bad correspondences (▲) based on the reprojection error. Right: corresponding sections of the trajectory. (a) and (c) show
examples with keypoints on dynamic objects. Although their estimated covariances is somewhat lower (especially in (c)) this is not enough
to compensate the error. (e) shows an example where points with a higher reprojection error get assigned a covariances on a similar level
or slightly better than good correspondences.

ing vectors f and f ′ are noisy, we can write them as

f = µ+ η, η ∼ N (0,Σ) , (1)
f = µ′ + η′, η′ ∼ N (0,Σ′) , (2)

with a constant and a noise term. We then get the new nor-
mal vector as

ns = (µ+ η)×R(µ′ + η′) (3)
= µ̂Rµ′ + µ̂Rη′ + η̂Rµ′ + η̂Rη′ ,

with a constant term µn = µ̂Rµ′ and a noise term ηn =
Rη′ + η̂Rµ′ + η̂Rη′. The noise term is zero centered and
has a variance of

Σn = ˆ(Rµ′
i)Σi

ˆ(Rµ′
i)

⊤ + µ̂iRΣ′
iR

⊤µ̂i
⊤ + Σ̃ , (4)

where Σ̃ is constructed from the columns of Σ and Σ′
R =

RΣ′R⊤ as

Σ̃ =

(Σ2 ×Σ′
R,3 +Σ3 ×Σ′

R,2)
⊤

(Σ3 ×Σ′
R,1 +Σ1 ×Σ′

R,3)
⊤

(Σ1 ×Σ′
R,2 +Σ2 ×Σ′

R,1)
⊤

 . (5)

As stated in the main paper, we use an approximation of the
noise distribution. Since Σ̃ is order of magnitudes smaller
than the other terms, we can approximate Σn as

Σn ≈ ˆ(Rµ′
i)Σi

ˆ(Rµ′
i)

⊤ + µ̂iRΣ′
iR

⊤µ̂i
⊤ . (6)

The final residual variance is given by

σ2
s = t⊤Σnt . (7)

Fig. 1 shows a comparison between our approxima-
tion and a the true residual distribution, given noisy image
points. Do to the unprojection of the image points to bear-
ing vectors, the trace of the bearing vector covariances is
small for a focal length f of ca. 720 pixels on the KITTI
dataset, since tr(Σ) ∼ 1/f2. Given the small covariances,
Σ̃ is several magnitudes smaller than the other terms, mak-
ing the approximation accurate. Fig. 2 shows the correlation
between the variance and the focal length.

D. Gradient
In this section, we show that the gradient ∂L/∂Σ2D is re-

stricted by the problem geometry. We state the components
needed to obtain ∂L/∂Σ2D and show, how the geometry re-
stricts their direction. Therefore, given a constant geometry
the overall gradient direction only moves little throughout
the training.

We start by rewriting the residual es of symmetric PNEC
energy function as

es =
n

σs
=

n√
dΣ + dΣ′

, (8)
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Figure 4. Left: estimated keypoints with covariances (color-coded ellipses) for examples where our method performs better than NEC-LS.
Good (▼) and bad correspondences (▲) based on the reprojection error. Right: corresponding sections of the trajectory. Covariances for
bad correspondences are estimated to be higher in these examples. They are down-weighted in the optimization leading to better pose
estimates.

for easier differentiation, with the components

n = t⊤f̂ exp x̂Rf ′f ′⊤R⊤ exp x̂⊤f̂⊤t , (9)

dΣ =
((
exp x̂Rf ′)× t

)⊤Σ
((
exp x̂Rf ′)× t

)
, (10)

dΣ′ = t⊤f̂ exp x̂RΣ′R⊤ exp x̂⊤f̂⊤t . (11)

Since we are working with rotations in SO(3) we differen-
tiate with regard to x ∈ so(3) around the identity rotation.
This gives us the following gradients

∂n

∂x
= 2

(
(Rf ′f ′⊤R⊤ exp x̂⊤f̂⊤t)× (f̂ t)

)⊤
, (12)

∂dΣ
∂x

= 2
(
(Rf ′)× (t̂Σt̂

⊤
exp x̂Rf ′)

)⊤
, (13)

∂dΣ′

∂x
= 2

(
(RΣ′R⊤ exp x̂⊤f̂⊤t)× (f̂ t)

)⊤
, (14)

with regard to the rotation. The direction of each gradient is
restricted by the cross product. The gradient for the residual
is given by

∂es
∂x

=
1

σs

∂n

∂x
− n

2σ3
s

(
∂dΣ
∂x

+
∂dΣ′

∂x

)
. (15)

The gradients with regard to the bearing vector covariances

are solely dependent on the geometry as they are given by

∂dΣ
∂Σ

=
(
t× (exp x̂Rf ′)

) (
t× (exp x̂Rf ′)

)⊤
, (16)

∂dΣ′

∂Σ′ =
(
R⊤ exp x̂⊤f̂⊤t

)(
R⊤ exp x̂⊤f̂⊤t

)⊤
. (17)

The gradients of the residual are given by

∂es
∂Σ

= − n

2σ3
s

∂dΣ
∂Σ

, (18)

∂es
∂Σ′ = − n

2σ3
s

∂dΣ′

∂Σ′ . (19)

Since all components are restricted by the geometry of the
problem, the overall gradient is somewhat restricted as well.
We show this empirically in the following.

Fig. 5 and Fig. 6 give the distribution of the gradient
for the first experiment on synthetic data, where all individ-
ual problems share the same geometric setup. Fig. 6 shows
the eigenvectors of ∂L/∂Σ2D for one covariance in the im-
age plane. After 10 epochs of training, the eigenvectors are
mainly located at 4 distinct regions, showing the restriction
of the gradient direction. Even after 100 epochs of train-
ing certain regions show only few eigenvectors. The angu-
lar distribution of the eigenvectors in Fig. 5 show 4 distinct
peaks, with almost no eigenvectors in between.

Fig. 7 and Fig. 8 show the distribution of the gradient for
the second experiment on synthetic data, with more diverse



Hyperparameter KITTI EuRoC

optimizer ADAM ADAM
β1 0.9 0.9
β2 0.999 0.999
learning rate 5 · 10−4 5 · 10−4

PNEC and theseus

regularization 10−13 10−13

damping 107 107

iterations 100 100

RANSAC

iterations 5000 5000
threshold 10−6 8 · 10−7

Table 1. Parameters used for training and evaluation.

data. Given the diverse data, there are eigenvectors in all
directions, even after 10 epochs. Fig. 7 still shows 4 distinct
peaks, however there is no sparsity in the distribution.

The sparse distribution of the gradient direction prohibit
learning the correct noise distribution for the first exper-
iment. Only the residual variance is correctly estimated.
However, the introduction of diverse data with different ge-
ometries removes this restriction, leading better covariance
estimates.

E. Hyperparameters

This section details the training and evaluation param-
eters for our DNLS framework for estimating noise distri-
butions of keypoints. All models are trained on two RTX
5000 GPUs with 16GB of memory for around 3 days. We
use a UNet architecture with 3 output channels for predict-
ing the uncertainty parameters. The UNet has 4 down con-
volutions and 4 up convolutions with 32, 64, 128, 256 and
128, 64, 32, 16 channels, respectively. Tab. 2 gives the Su-
perPoint and SuperGlue hyperparameters for training and
evaluation. For our supervised training, we train on con-
secutive image pairs of the training sequences. For our self-
supervised training we create the training tuples from 3 con-
secutive images. When training with SuperPoint, we crop
the images to size (1200, 300), whereas for KLT-Tracks, we
crop it to (1200, 320). We found that reducing the height
too much for KLT-tracks leads to not enough trackAss. For
evaluating with KLT-tracks on KITTI we change the fol-
lowing to [6]: instead of tracking keypoints over multiple
images, we start with fresh keypoints for each image pair.
To account for the symmetric PNEC, we slightly modify
the uncertainty extraction. We use [6, suppl., Eqn. (8)] as
the uncertainty measure for the tracks in both frames. We
found, that these changes already give better results than the
ones stated [6]. Tab. 1 gives the training parameter for opti-
mizer, theseus and the PNEC energy function not stated in
the main paper.

Hyperparameter training KITTI EuRoC

max keypoints 256 2048 1024
keypoint threshold 0.005 0.005 0.0005
nms radius 3 3 3

weights outdoor outdoor indoor
sinkhorn iterations 20 20 20
match threshold 0.5 0.5 0.01

Table 2. Hyperparameters for SuperPoint and SuperGlue during
training and evaluation on the KITTI and EuRoC dataset.

F. Moving the Minimum
Fig. 10 and Fig. 9 show examples for energy functions

around the ground truth pose on the KITTI dataset. The
energy functions are evaluated with keypoints filtered us-
ing the reprojection error also used in the RANSAC scheme
of [3] to remove outliers. We show the energy functions
evaluated for rotations around the ground truth for yaw and
pitch. While the overall shape of the energy function stays
the same, our methods moves the minimum closer to the
ground truth pose by learning the covariances.

G. Further Results
In this section we present additional results on the KITTI

dataset, not presented in the main paper due to constrained
space. We give the evaluation results for all sequences,
training and test set. To present more comparisons with
baseline methods, we replace the Nistér-5pt [8] with the 8pt
[5] algorithm. Furthermore, we replace the weighted NEC-
LS and the KLT-PNEC. Instead, we add another PNEC
method, where we approximate the error distribution us-
ing a reprojection error. Following [3], we triangulate a
3D point using the feature correspondence pi,p

′
i and the

ground truth pose. We reproject the point into the images as
p̃i, p̃

′
i and approximate the the error distribution as scaled

isotropic covariances

Σ2D,i = ∥p̃i − pi∥2I2 , (20)

Σ′
2D,i = ∥p̃′

i − p′
i∥2I2 . (21)

We clip the scale of the covariances at 0.01 and 4.0. Tab. 4
shows the results for the training and test set on KITTI with
SuperPoint. While the reprojection method achieves the
best results for the RPE1 and et, our methods are often not
far behind. This shows, that our network is capable and not
too far off, when it comes to pose estimation. Tab. 3 shows
the results for KITTI with KLT-tracks.

We show trajectories for all sequences of the KITTI
dataset in Fig. 12 and Fig. 11. Our method consistently
achieves the smallest drift over all sequences.
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Figure 5. Histogram of eigenvector angles for the gradient ∂L/∂Σ′

2D after 10, 50, and 100 epochs. The histogram shows 4 distinct peaks,
with only a few points in between. This shows the limited direction that the gradients have, making it difficult to learn the true distribution
of the covariances with little diversity in the training data.
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Figure 6. Distribution of eigenvectors of the gradient ∂L/∂Σ′

2D after 10, 50, and 100 epochs. Eigenvectors are color coded (green to blue
and yellow to red) depending, whether there are the 1st or 2nd eigenvector and their epoch. While after 100 epochs most of the circle is
covered, the eigenvectors aggregate at certain positions. Especially after 10 epochs, the eigenvectors are sparsely distributed. This shows a
limited range of directions for the gradient.
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Figure 7. Histogram of eigenvector angles for the gradient ∂L/∂Σ′

2D after 10, 50, and 100 epochs. While it shows 4 distinct peaks, event
after only 10 epochs many points lie in between. The direction of the gradient is not limited, allowing for a better fit to the ground truth
noise distribution.
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Figure 8. Distribution of eigenvectors of the gradient ∂L/∂Σ′

2D after 10, 50, and 100 epochs. Eigenvectors are color coded (green to blue
and yellow to red) depending, whether there are the 1st or 2nd eigenvector and their epoch. Even after 10 epochs, the eigenvectors are
evenly distributed. This show, that the gradient has no limit for its direction, allowing for a better fit to the noise distribution even in the
image plane.
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Figure 9. Energy functions evaluated for rotations around the ground truth pose (green). Minimum of the cost function is marked in red.
The energy function is evaluated for SuperPoint keypoint for two pose estimation problems on the KITTI dataset, filtered with RANSAC
at the ground truth pose. We compare the weighted NEC-LS energy function to the PNEC energy function with our supervised and self-
supervised covariances. While the overall shape of the energy function stays the same, our learned covariances move the minimum closer
to the ground truth.
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Figure 10. Energy functions evaluated for rotations around the ground truth pose (green). Minimum of the cost function is marked in red.
The energy function is evaluated for KLT-tracks for two pose estimation problems on the KITTI dataset, filtered with RANSAC at the
ground truth pose. We compare the PNEC energy function using the KLT-covariances with our supervised and self-supervised covariances.
While the overall shape of the energy function stays the same, our learned covariances move the minimum closer to the ground truth.



8PT [5] NEC [4] NEC-LS OURS OURS SELF- REPROJECTION
SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

00 0.185 7.203 2.61 0.153 5.505 9.32 0.121 2.403 1.42 0.115 2.994 1.31 0.113 3.110 1.30 0.117 3.080 1.29
01 0.253 7.162 2.89 0.659 28.523 5.24 0.270 8.991 2.20 0.294 6.433 2.23 0.349 6.042 2.27 0.363 7.712 2.20
02 0.159 7.451 1.85 0.115 6.891 7.69 0.079 3.751 1.06 0.078 3.411 0.99 0.075 3.342 0.99 0.083 4.410 0.99
03 0.131 4.822 2.47 0.089 1.889 7.45 0.051 1.493 1.17 0.058 0.602 1.01 0.049 0.444 1.00 0.047 0.608 1.00
04 0.126 1.899 1.08 0.037 0.846 6.42 0.037 0.816 0.50 0.030 0.387 0.44 0.030 0.428 0.43 0.028 0.549 0.33
05 0.148 5.563 3.35 0.155 10.630 9.75 0.089 6.352 2.40 0.046 1.285 2.23 0.046 1.235 2.23 0.056 1.644 2.17
06 0.142 3.376 1.55 0.066 1.984 7.30 0.044 1.325 0.63 0.032 1.576 0.50 0.032 1.569 0.50 0.031 1.467 0.45
07 0.170 5.347 6.41 0.258 12.558 12.51 0.120 5.371 5.58 0.094 2.731 4.97 0.098 2.500 5.15 0.073 2.132 4.18
08 0.144 8.508 3.49 0.088 3.902 8.91 0.053 2.908 2.49 0.048 2.373 2.36 0.047 1.706 2.36 0.047 2.454 2.31
09 0.151 4.546 1.71 0.054 2.027 6.76 0.052 2.307 0.74 0.043 1.244 0.64 0.042 1.141 0.64 0.044 1.385 0.64
10 0.148 6.540 2.88 0.119 8.302 8.53 0.066 4.576 1.78 0.058 3.789 1.58 0.056 3.623 1.60 0.057 2.615 1.37

train 0.168 6.407 2.69 0.173 8.301 8.59 0.103 3.955 1.73 0.094 2.782 1.60 0.096 2.737 1.61 0.100 3.193 1.52
test 0.146 7.246 2.97 0.085 4.237 8.34 0.055 3.060 1.96 0.048 2.359 1.82 0.048 1.910 1.83 0.048 2.234 1.76

Table 3. Quantitative comparison on the KITTI [2] dataset with Kanade-Lucas-Tomasi (KLT) tracks [9]. We replace the Nistér-5pt [7]
with the 8pt [5] algorithm to show more results. We also show, an approximation of the true error distance using reprojected points (this
is excluded from being bold or underlined). While the reprojection approximation achieves the best results on almost all sequences, our
methods are often not far behind. This emphasises, that our method is able to effectively learn covariances.

8PT [5] NEC [4] NEC-LS OURS OURS SELF- REPROJECTION
SUPERVISED SUPERVISED

Seq. RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et RPE1 RPEn et

00 0.216 11.650 3.40 0.132 12.483 3.20 0.116 8.728 1.35 0.114 2.277 1.38 0.114 2.522 1.38 0.113 2.363 1.28
01 0.246 8.080 3.83 0.539 22.857 1.55 0.082 6.378 1.00 0.060 5.811 0.99 0.057 5.770 0.94 0.054 5.997 0.81
02 0.188 12.003 2.06 0.093 7.594 1.76 0.069 4.050 1.01 0.066 2.224 0.99 0.066 2.237 1.00 0.065 2.679 0.95
03 0.167 8.308 3.42 0.090 3.863 3.31 0.055 3.754 1.12 0.059 2.239 1.13 0.057 2.051 1.12 0.054 2.394 1.07
04 0.160 2.682 1.45 0.040 0.486 0.81 0.041 0.434 0.49 0.038 1.041 0.46 0.037 0.808 0.46 0.027 0.526 0.30
05 0.198 9.236 4.56 0.119 11.779 3.65 0.062 12.437 2.50 0.055 1.931 2.37 0.055 1.949 2.40 0.053 2.123 2.02
06 0.193 5.244 2.89 0.059 6.901 1.43 0.050 6.634 0.76 0.042 1.178 0.70 0.041 1.242 0.70 0.035 0.964 0.58
07 0.231 7.086 8.86 0.185 4.402 8.67 0.112 2.341 6.69 0.103 2.772 6.54 0.109 3.715 6.63 0.120 3.434 4.82
08 0.183 10.423 4.21 0.081 8.284 3.66 0.056 7.004 2.50 0.050 4.067 2.46 0.050 4.118 2.46 0.048 3.623 2.30
09 0.185 5.485 2.29 0.053 1.646 1.43 0.052 1.553 0.71 0.049 1.317 0.71 0.049 1.278 0.70 0.048 1.160 0.69
10 0.198 8.960 4.09 0.167 9.264 4.43 0.064 4.787 1.79 0.063 3.513 1.64 0.065 3.821 1.65 0.060 2.404 1.21

train 0.203 10.051 3.54 0.141 10.127 2.97 0.082 6.910 1.72 0.077 2.378 1.69 0.077 2.505 1.69 0.076 2.606 1.44
test 0.186 9.023 3.74 0.089 6.917 3.28 0.056 5.353 1.96 0.052 3.333 1.91 0.053 3.408 1.91 0.050 2.839 1.73

Table 4. Full results on the KITTI [2] dataset with SuperPoint [1] keypoints. We replace the Nistér-5pt [7] with the 8pt [5] algorithm to
show more results. We also show, an approximation of the true error distance using reprojected points (this is excluded from being bold or
underlined). While the reprojection approximation achieves the best results on almost all sequences, our methods are often not far behind.
This emphasises, that our method is able to effectively learn covariances.
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Figure 11. Trajectory comparison for the KITTI visual odometry sequences for SuperPoint keypoints. Since we compare monocular
methods, that cannot estimate the correct scale from a pair of images, we use the scale of the ground truth translations for visualization
purposes.
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Figure 12. Trajectory comparison for the KITTI visual odometry sequences for KLT-tracks. Since we compare monocular methods, that
cannot estimate the correct scale from a pair of images, we use the scale of the ground truth translations for visualization purposes.
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