
A. Related Work
Several existing approaches model uncertainty using

feature-space density but underperform without fine-tuning
on OoD data. Our work identifies feature collapse and ob-
jective mismatch as possible reasons for this. Among these
approaches, [43] uses Mahalanobis distances to quantify un-
certainty by fitting a class-wise Gaussian distribution (with
shared covariance matrices) on the feature space of a pre-
trained ResNet encoder. The competitive results they report
require input perturbations, ensembling GMM densities from
multiple layers, and fine-tuning on OoD hold-out data. They
do not discuss any constraints which the ResNet encoder
should satisfy, and therefore, are vulnerable to feature col-
lapse. In Fig. 1c, for example, the feature density of a LeNet
and a VGG are unable to distinguish OoD from iD samples.
[59] also propose a density-based estimation of aleatoric and
epistemic uncertainty. Similar to [43], they do not constrain
their pre-trained ResNet encoder. They do discuss feature
collapse though, noting that they do not address this problem.
Moreover, they do not consider the objective mismatch that
arises (see Proposition 5.3 below) and use a single estimator
for both epistemic and aleatoric uncertainty. Consequently,
they report worse epistemic uncertainty: 74% AUROC on
CIFAR-10 vs SVHN, which we show to considerably fall be-
hind modern approaches for uncertainty estimation in deep
learning in §4. Likewise, [46] compute an unnormalized
density based on the softmax logits without taking into ac-
count the need for inductive biases to ensure smoothness and
sensitivity of the feature space.

[69] use contrastive training on the feature extractor be-
fore estimating the feature-space density. Our method is
orthogonal from this work as we restrict ourselves to the su-
pervised setting and show that the inductive biases that result
in bi-Lipschitzness [45; 65] are sufficient for the feature-
space density to reliably capture epistemic uncertainty.

Lastly, our method improves upon [65] and [45] by alle-
viating the need for additional hyperparameters: DDU only
needs minimal changes from the standard softmax setup to
outperform DUQ and SNGP on uncertainty benchmarks, and
our GMM parameters are optimised for the already trained
model using the training set. In particular, DDU does not
require training or fine-tuning with OoD data. Moreover, our
insights in §5 explain why [45] found that a baseline that
uses the softmax entropy instead of the feature-space den-
sity of a deterministic network with bi-Lipschitz constraint
underperforms.

A.1. Predictive Entropy and Confidence in Recent
Works

Table 4 shows a selection of recently published papers
which use entropy or confidence as OoD score. Only two
papers examine using Mutual Information with Deep Ensem-
bles as OoD score at all. None of the papers examines the

Figure 8. Samples from Ambiguous-MNIST.

possible confounding of aleatoric and epistemic uncertainty
when using predictive entropy or confidence, or the consis-
tency issues of softmax entropy (and softmax confidence),
detailed in §5. This list is not exhaustive, of course.

B. Ambiguous- and Dirty-MNIST
Each sample in Ambiguous-MNIST is constructed by

decoding a linear combination of latent representations of 2
different MNIST digits from a pre-trained VAE [35]. Every
decoded image is assigned several labels sampled from the
softmax probabilities of an off-the-shelf MNIST neural net-
work ensemble, with points filtered based on an ensemble’s
MI (to remove ‘junk’ images) and then stratified class-wise
based on their softmax entropy (some classes are inherently
more ambiguous, so we “amplify” these; we stratify per-
class to try to preserve a wide spread of possible entropy
values, and avoid introducing additional ambiguity which
will increase all points to have highest entropy). All off-the-
shelf MNIST neural networks were then discarded and new
models were trained to generate Fig 1 (and as can be seen,
the ambiguous points we generate indeed have high entropy
regardless of the model architecture used). We create 60K
such training and 10K test images to construct Ambiguous-
MNIST. Finally, the Dirty-MNIST dataset in this experiment
contains MNIST and Ambiguous-MNIST samples in a 1:1
ratio (with 120K training and 20K test samples). In Fig. 8,
we provide some samples from Ambiguous-MNIST.

C. Algorithm
C.1. Increasing sensitivity

Using residual connections to enforce sensitivity works
well in practice when the layer is defined as x′ = x+ f(x).
However, there are several places in the network where addi-
tional spatial downsampling is done in f(·) (through a strided
convolution), and in order to compute the residual operation
x needs to be downsampled as well. These downsampling



Table 4. A sample of recently published papers and OoD metrics. Many recently published papers only use Predictive Entropy or Predictive
Confidence (for Deep Ensembles) or Softmax Confidence (for deterministic models) as OoD scores without addressing the possible
confounding of aleatoric and epistemic uncertainty, that is ambiguous iD samples with OoD samples. Only two papers examine using
Mutual Information with Deep Ensembles as OoD score at all.

Title Citation Softmax Confidence Predictive Confidence Predictive Entropy Mutual Information

A Baseline for Detecting Misclassified and Out-of-Distribution Examples in
Neural Networks [24] 3 7 7 7

Deep Anomaly Detection with Outlier Exposure [25] 3 7 7 7

Enhancing The Reliability of Out-of-distribution Image Detection in Neural
Networks [44] 3 7 7 7

Training Confidence-calibrated Classifiers for Detecting Out-of-Distribution
Samples [42] 3 7 7 7

Learning Confidence for Out-of-Distribution Detection in Neural Networks [8] 3 7 7 7

Simple and Scalable Predictive Uncertainty Estimation using Deep Ensem-
bles [40] 7 3 3 7

Predictive Uncertainty Estimation via Prior Networks [50] 7 3 3 3

Ensemble Distribution Distillation [51] 7 7 3 3

Generalized ODIN: Detecting Out-of-Distribution Image Without Learning
From Out-of-Distribution Data [29] 3 7 7 7

Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [38] 7 3 7 7

operations are crucial for managing memory consumption
and generalisation. The way this is traditionally done in
ResNets is by introducing an additional function g(·) on the
residual branch (obtaining x′ = g(x) + f(x)) which is a
strided 1x1 convolution. In practice, the stride is set to 2 pix-
els, which leads to the output of g(·) only being dependent
on the top-left pixel of each 2x2 patch, which reduces sen-
sitivity. We overcome this issue by making an architectural
change that improves uncertainty quality without sacrificing
accuracy. We use a strided average pooling operation instead
of a 1x1 convolution in g(·). This makes the output of g(·)
dependent on all input pixels. Additionally, we use leaky
ReLU activation functions, which are equivalent to ReLU
activations when the input is larger than 0, but below 0 they
compute p ∗ x with p = 0.01 in practice. These further
improve sensitivity as all negative activations still propagate
in the network.

C.2. Algorithm Implementation

The algorithm is provided in Algorithm 1. Note that
in order to compute thresholds for low and high density
or entropy, we can simply use the training set containing
iD data. We set all points having density lower than 99%
quantile as OoD.

C.3. Computational Complexity

Let N be the number of samples; D, the feature space
dimensionality; and C, the number of classes with ≈ N/C
samples per class (balanced). For fitting the GMM via
GDA: computing the covariance matrix per class requires
(C(N/C)D2) = (ND2) complexity. Computing the inverse
and determinant of the covariance matrices via the Cholesky
decomposition requires (D3) per class. Thus, the total com-

putational cost for GDA is (ND2 + CD3). Evaluating den-
sity of a single point: distance from class means requires
(CD), and matrix vector multiplications requires (CD2).
Hence, the total cost for evaluating density on a single point
is (CD2).

D. Experimental Details

D.1. Dirty-MNIST

We train for 50 epochs using SGD with a momentum of
0.9 and an initial learning rate of 0.1. The learning rate drops
by a factor of 10 at training epochs 25 and 40. Following
SNGP [45], we apply online spectral normalisation with one
step of a power iteration on the convolutional weights. For
1x1 convolutions, we use the exact algorithm, and for 3x3
convolutions, the approximate algorithm from [18]. The
coefficient for SN is a hyper-parameter which we set to 3
using cross-validation.

D.2. OoD Detection Training Setup

We train the softmax baselines on CIFAR-10/100 for 350
epochs using SGD as the optimiser with a momentum of
0.9, and an initial learning rate of 0.1. The learning rate
drops by a factor of 10 at epochs 150 and 250. We train
the 5-Ensemble baseline using this same training setup. The
SNGP and DUQ models were trained using the setup of
SNGP and hyper-parameters mentioned in their respective
papers [45; 65]. For models trained on ImageNet, we train
for 90 epochs with SGD optimizer, an initial learning rate
of 0.1 and a weight decay of 1e-4. We use a learning rate
warmup decay of 0.01 along with a step scheduler with step
size of 30 and a step factor of 0.1.



Algorithm 1 Deep Deterministic Uncertainty

1: Definitions:
- Regularized feature extractor fθ : x→ Rd
- Softmax output predictions: p(y|x)
- GMM density: q(z) =

∑
y q(z|y = c) q(y = c)

- Dataset (X,Y )

2: procedure TRAIN
3: train NN p(y|fθ(x)) with (X,Y )
4: for each class c with samples xc ⊂ X do
5: µc ← 1

|xc|
∑

xc
fθ(xc)

6: Σc ← 1
|xc|−1 (fθ(xc)− µc)(fθ(xc)− µc)T

7: πc ←
∑

xc
1

|X|
8: end for
9: end procedure

10: function DISENTANGLE_UNCERTAINTY(sample x)
11: compute feature representation z = fθ(x)
12: compute density under GMM: q(z) =

∑
y q(z |

y) q(y) with q(z | y) ∼ N (µy;σy), q(y) = πy
13: compute softmax entropy: Hp[Y |x]

14: if low density q(z) then
15: return (−q(z), )
16: else if high density q(z) then
17: if high entropy Hp[Y |x] then
18: return ambiguous iD
19: else if low entropy Hp[Y |x] then
20: return (0, Hp[Y |x])
21: end if
22: end if
23: end function

D.3. Semantic Segmentation Training Setup

In Figure 9, we plot the L2 distance between feature space
means of different classes for a pair of randomly chosen dis-
tant pixels on the Pascal VOC 2012 val set. We observe that
feature space means between pairs of different classes are
more distant compared to the same class irrespective of the
location of the pixel for the class. This leads us to construct
a Gaussian mean and covariance matrix per class as opposed
to one mean and one covariance matrix per class per pixel,
thereby greatly reducing the computational load of fitting a
GMM in semantic segmentation. Similar to classification,
we treat each pixel in the training set as a separate sample
and fit a single Gaussian mean and covariance matrix per
class.

For the semantic segmentation experiment, we use a
DeepLab-v3+ [3] model with a ResNet-101 backbone as
the architecture of choice. We train each of the models on
Pascal VOC for 50 epochs using SGD as the optimizer, with

Figure 9. L2 distances between the feature space means of different
classes for a pair of distant pixels on the Pascal VOC 2012 val set:
(left) Pixels (10, 255) and (500, 255), (middle) Pixels (234, 349)
and (36, 22) and (right) Pixels (300, 500) and (400, 255).

a momentum of 0.9 and a weight decay of 5e−4. We set the
initial learning rate to 0.007 with a polynomial decay during
the course of training. Finally, we trained with a batch size
of 32 parallelized over 4 GPUs.

D.4. Compute Resources

Each model (ResNet-18, Wide-ResNet-28-10, ResNet-50,
ResNet-110, DenseNet-121 or VGG-16) used for the large
scale active learning, CIFAR-10 vs SVHN/CIFAR-100/Tiny-
ImageNet/CIFAR-10-C and CIFAR-100 vs SVHN/Tiny-
ImageNet tasks was trained on a single Nvidia Quadro RTX
6000 GPU. Each model (LeNet, VGG-16 and ResNet-18)
used to get the results in Fig. 1 and Tab. 11 was trained
on a single Nvidia GeForce RTX 2060 GPU. Each model
(ResNet-50, Wide-ResNet-50-2, VGG-16) trained on Ima-
geNet was trained using 8 Nvidia Quadro RTX 6000 GPUs.

E. Additional Results
In this section, we provide details of additional

results on the OoD detection task using CIFAR-10
vs SVHN/CIFAR-100/Tiny-ImageNet/CIFAR-10-C and
CIFAR-100 vs SVHN/Tiny-ImageNet for ResNet-50,
ResNet-110 and DenseNet-121 architectures. We present
results on ResNet-50, ResNet-110 and DenseNet-121
for CIFAR-10 vs SVHN/CIFAR-100/Tiny-ImageNet and
CIFAR-100 vs SVHN/Tiny-ImageNet in Tab. 5, Tab. 6 and
Tab. 7 respectively. We also present results on individ-
ual corruption types for CIFAR-10-C for Wide-ResNet-28-
10, ResNet-50, ResNet-110 and DenseNet-121 in Fig. 10,
Fig. 11, Fig. 12 and Fig. 13 respectively.

Finally, we provide results for various ablations on DDU.
As mentioned in §3, DDU consists of a deterministic soft-
max model trained with appropriate inductive biases. It
uses softmax entropy to quantify aleatoric uncertainty and
feature-space density to quantify epistemic uncertainty. In
the ablation, we try to experimentally evaluate the following
scenarios:
1. Effect of inductive biases (sensitivity + smoothness):

We want to see the effect of removing the proposed induc-
tive biases (i.e. no sensitivity and smoothness constraints)
on the OoD detection performance of a model. To do
this, we train a VGG-16 with and without spectral nor-



Table 5. OoD detection performance of different baselines using a ResNet-50 architecture with the CIFAR-10 vs SVHN/CIFAR-100/Tiny-
ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet dataset pairs averaged over 25 runs. Note: SN stands for Spectral Normalisation, JP
stands for Jacobian Penalty. We highlight the best deterministic and best method overall in bold for each metric.

Train Dataset Method Penalty Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC CIFAR-100 (↑) AUROC Tiny-ImageNet (↑)

CIFAR-10

Softmax - Softmax Entropy Softmax Entropy
95.04± 0.05 0.97± 0.04

93.80± 0.41 88.91± 0.07 88.32± 0.07
Energy-based [46] - Softmax Density 94.48± 0.44 88.84± 0.08 88.45± 0.08

DUQ [65] JP Kernel Distance Kernel Distance 94.05± 0.11 1.71± 0.07 93.14± 0.43 83.87± 0.27 84.28± 0.26
SNGP [45] SN Predictive Entropy Predictive Entropy 94.90± 0.11 1.01± 0.03 93.15± 0.85 89.32± 0.10 88.96± 0.13

DDU (ours) SN Softmax Entropy GMM Density 94.92± 0.06 1± 0.04 94.77± 0.35 89.98± 0.17 89.12± 0.13

5-Ensemble - Predictive Entropy Predictive Entropy
96.06± 0.04 1.65± 0.07

94.75± 0.39 89.87± 0.06 88.69± 0.05
[40] Mutual Information 94.09± 0.20 89.76± 0.06 89.04± 0.03

Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC Tiny-ImageNet (↑)

CIFAR-100

Softmax - Softmax Entropy Softmax Entropy
77.91± 0.09 4.32± 0.10

81.32± 0.65 79.83± 0.07
Energy-based [46] - Softmax Density 82.05± 0.69 79.61± 0.08

SNGP [45] SN Predictive Entropy Predictive Entropy 74.73± 0.22 7.68± 0.13 82.50± 2.09 77.05± 0.16
DDU (ours) SN Softmax Entropy GMM Density 79.26± 0.16 4.07± 0.06 87.34± 0.64 82.11± 0.20

5-Ensemble - Predictive Entropy Predictive Entropy
81.06± 0.07 3.54± 0.12

83.42± 0.89 77.69± 0.12
[40] Mutual Information 84.24± 0.90 81.59± 0.05

Table 6. OoD detection performance of different baselines using a ResNet-110 architecture with the CIFAR-10 vs SVHN/CIFAR-100/Tiny-
ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet dataset pairs averaged over 25 runs. Note: SN stands for Spectral Normalisation, JP
stands for Jacobian Penalty. We highlight the best deterministic and best method overall in bold for each metric.

Train Dataset Method Penalty Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC CIFAR-100 (↑) AUROC Tiny-ImageNet (↑)

CIFAR-10

Softmax - Softmax Entropy Softmax Entropy
95.08± 0.04 1.02± 0.04

93.12± 0.44 88.7± 0.1 88.07± 0.11
Energy-based [46] - Softmax Density 93.67± 0.47 88.60± 0.11 88.13± 0.11

DUQ [65] JP Kernel Distance Kernel Distance 94.32± 0.17 1.21± 0.07 94.02± 0.45 86.17± 0.35 85.24± 0.21
SNGP [45] SN Predictive Entropy Predictive Entropy 94.85± 0.09 1.04± 0.02 93.17± 0.53 89.23± 0.10 88.80± 0.12

DDU (ours) SN Softmax Entropy GMM Density 94.82± 0.06 1.01± 0.04 95.48± 0.30 90.08± 0.13 89.18± 0.15

5-Ensemble - Predictive Entropy Predictive Entropy
96.18± 0.05 1.57± 0.05

95.07± 0.45 90.23± 0.04 89± 0.03
[40] Mutual Information 94.72± 0.34 89.69± 0.05 88.35± 0.05

Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC Tiny-ImageNet (↑)

CIFAR-100

Softmax - Softmax Entropy Softmax Entropy
78.65± 0.10 3.93± 0.13

82.04± 0.57 80.13± 0.07
Energy-based [46] - Softmax Density 82.78± 0.60 80.01± 0.09

SNGP [45] SN Predictive Entropy Predictive Entropy 76.16± 0.27 6.43± 0.75 83.94± 0.10 78.54± 0.28
DDU (ours) SN Softmax Entropy GMM Density 78.89± 0.17 3.79± 0.07 88.66± 0.56 82.58± 0.24

5-Ensemble - Predictive Entropy Predictive Entropy
81.80± 0.10 3.67± 0.11

83.68± 0.33 81.12± 0.13
[40] Mutual Information 85.11± 0.57 81.94± 0.06

Table 7. OoD detection performance of different baselines using a DenseNet-121 architecture with the CIFAR-10 vs SVHN/CIFAR-100/Tiny-
ImageNet and CIFAR-100 vs SVHN/Tiny-ImageNet dataset pairs averaged over 25 runs. Note: SN stands for Spectral Normalisation, JP
stands for Jacobian Penalty. We highlight the best deterministic and best method overall in bold for each metric.

Train Dataset Method Penalty Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC CIFAR-100 (↑) AUROC Tiny-ImageNet (↑)

CIFAR-10

Softmax - Softmax Entropy Softmax Entropy
95.16± 0.03 1.10± 0.04

94± 0.44 87.55± 0.11 86.99± 0.12
Energy-based [46] - Softmax Density 94.07± 0.54 86.73± 0.15 86.43± 0.16

DUQ [65] JP Kernel Distance Kernel Distance 95.02± 0.14 1.08± 0.08 94.67± 0.41 87.38± 0.21 86.72± 0.14
SNGP [45] SN Predictive Entropy Predictive Entropy 94.31± 0.21 1.08± 0.10 94.48± 0.34 88.86± 0.46 88.40± 0.48

DDU (ours) SN Softmax Entropy GMM Density 95.21± 0.03 1.05± 0.03 96.21± 0.31 90.84± 0.06 89.70± 0.06

5-Ensemble - Predictive Entropy Predictive Entropy
96.18± 0.05 1.07± 0.07

95.78± 0.11 90.65± 0.03 89.62± 0.06
[40] Mutual Information 95.75± 0.10 90.71± 0.04 89.34± 0.06

Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC Tiny-ImageNet (↑)

CIFAR-100

Softmax - Softmax Entropy Softmax Entropy
79.02± 0.08 4.11± 0.08

85.86± 0.42 81.10± 0.07
Energy-based [46] - Softmax Density 87.09± 0.49 80.84± 0.08

SNGP [45] SN Predictive Entropy Predictive Entropy 79.15± 0.15 6.73± 0.10 85.00± 0.12 79.76± 0.15
DDU (ours) SN Softmax Entropy GMM Density 79.15± 0.07 4.11± 0.06 88.44± 0.55 81.85± 0.11

5-Ensemble - Predictive Entropy Predictive Entropy
81.01± 0.13 4.81± 0.05

88.32± 0.61 81.45± 0.12
[40] Mutual Information 88.36± 0.17 81.73± 0.06

malisation. Note that VGG-16 does not have residual
connections and hence, a VGG-16 does not follow the
sensitivity and smoothness (bi-Lipschitz) constraints.

2. Effect of sensitivity alone: Since residual connections
make a model sensitive to changes in the input space by
lower bounding its Lipschitz constant, we also want to
see how a network performs with just the sensitivity con-

straint alone. To observe this, we train a Wide-ResNet-28-
10 without spectral normalisation (i.e. no explicit upper
bound on the Lipschitz constant of the model).

3. Metrics for aleatoric and epistemic uncertainty: With
the above combinations, we try to observe how different
metrics for aleatoric and epistemic uncertainty perform.
To quantify aleatoric uncertainty, we use the softmax



Table 8. OoD detection performance of different ablations trained on CIFAR-10 using Wide-ResNet-28-10 and VGG-16 architectures with
SVHN, CIFAR-100 and Tiny-ImageNet as OoD datasets averaged over 25 runs. Note: SN stands for Spectral Normalisation. We highlight
the best deterministic and best method overall in bold for each metric.

Ablations Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC CIFAR-100 (↑) AUROC Tiny-ImageNet (↑)

Architecture Ensemble Residual Connections SN GMM

Wide-ResNet-28-10
7 3

7
7 Softmax Entropy Softmax Entropy

95.98± 0.02 0.85± 0.02
94.44± 0.43 89.39± 0.06 88.42± 0.05

Softmax Density 94.56± 0.51 88.89± 0.07 88.11± 0.06

3 Softmax Entropy GMM Density 95.98± 0.02 0.85± 0.02 96.08± 0.25 90.94± 0.03 90.62± 0.05

3
7 Softmax Entropy Softmax Entropy

95.97± 0.03 0.85± 0.04
94.05± 0.26 90.02± 0.07 89.07± 0.06

Softmax Density 94.31± 0.33 89.78± 0.08 88.96± 0.07

3 Softmax Entropy GMM Density 95.97± 0.03 0.85± 0.04 97.86± 0.19 91.34± 0.04 91.07± 0.05

3 3 7 7 Predictive Entropy Predictive Entropy
96.59± 0.02 0.76± 0.03

97.73± 0.31 92.13± 0.02 90.06± 0.03
Mutual Information 97.18± 0.19 91.33± 0.03 90.90± 0.03

VGG-16
7 3

7
7 Softmax Entropy Softmax Entropy

93.63± 0.04 1.64± 0.03
85.76± 0.84 82.48± 0.14 83.07± 0.12

Softmax Density 84.24± 1.04 81.91± 0.17 82.82± 0.14

3 Softmax Entropy GMM Density 93.63± 0.04 1.64± 0.03 89.25± 0.36 86.55± 0.10 86.78± 0.09

3
7 Softmax Entropy Softmax Entropy

93.62± 0.04 1.78± 0.04
87.54± 0.41 82.71± 0.09 83.33± 0.08

Softmax Density 86.28± 0.51 82.15± 0.11 83.07± 0.10

3 Softmax Entropy GMM Density 93.62± 0.04 1.78± 0.04 89.62± 0.37 86.37± 0.14 86.63± 0.11

3 3 7 7 Predictive Entropy Predictive Entropy
94.9± 0.05 2.03± 0.03

92.80± 0.18 89.01± 0.08 87.66± 0.08
Mutual Information 91± 0.22 88.43± 0.08 88.74± 0.05

Table 9. OoD detection performance of different ablations trained on CIFAR-100 using Wide-ResNet-28-10 and VGG-16 architectures with
SVHN and Tiny-ImageNet as the OoD dataset averaged over 25 runs. Note: SN stands for Spectral Normalisation. We highlight the best
deterministic and best method overall in bold for each metric.

Ablations Aleatoric Uncertainty Epistemic Uncertainty Test Accuracy (↑) Test ECE (↓) AUROC SVHN (↑) AUROC Tiny-ImageNet (↑)

Architecture Ensemble Residual Connections SN GMM

Wide-ResNet-28-10
7 3

7
7 Softmax Entropy Softmax Entropy

80.26± 0.06 4.62± 0.06
77.42± 0.57 81.53± 0.05

Softmax Density 78.00± 0.63 81.33± 0.06

3 Softmax Entropy GMM Density 80.26± 0.06 4.62± 0.06 87.54± 0.61 78.13± 0.08

3
7 Softmax Entropy Softmax Entropy

80.98± 0.06 4.10± 0.08
85.37± 0.36 82.57± 0.03

Softmax Density 86.41± 0.38 82.49± 0.04

3 Softmax Entropy GMM Density 80.98± 0.06 4.10± 0.08 87.53± 0.62 83.13± 0.06

3 3 7 7 Predictive Entropy Predictive Entropy
82.79± 0.10 3.32± 0.09

79.54± 0.91 82.95± 0.09
Mutual Information 77.00± 1.54 82.82± 0.04

VGG-16
7 3

7
7 Softmax Entropy Softmax Entropy

73.48± 0.05 4.46± 0.05
76.73± 0.72 76.43± 0.05

Softmax Density 77.70± 0.86 74.68± 0.07

3 Softmax Entropy GMM Density 73.48± 0.05 4.46± 0.05 75.65± 0.95 74.32± 1.73

3
7 Softmax Entropy Softmax Entropy

73.58± 0.06 4.32± 0.06
77.21± 0.77 76.59± 0.06

Softmax Density 77.76± 0.90 74.86± 0.08

3 Softmax Entropy GMM Density 73.58± 0.06 4.32± 0.06 75.99± 1.23 74.06± 1.67

3 3 7 7 Predictive Entropy Predictive Entropy
77.84± 0.11 5.32± 0.10

79.62± 0.73 78.66± 06
Mutual Information 72.07± 0.48 76.27± 0.05

Table 10. LDA vs GDA ablation for OoD detection performance using Wide-ResNet-50-2, ResNet-50, Wide-ResNet-50-2 architectures
(depending on dataset) on CIFAR-10 vs SVHN/CIFAR-100/TinyImageNet, CIFAR-100 vs SVHN/TinyImageNet, and ImageNet vs ImageNet-O
[26]. Best AUROC (↑) scores are marked in bold. GDA performs better, except with SVHN as OoD dataset.

Model WRN-28-10 WRN-28-10 WRN-50-2 RN-50
iD CIFAR-10 CIFAR-100 ImageNet

OoD SVHN CIFAR-100 TinyImageNet SVHN TinyImageNet ImageNet-O

LDA (Maha [43]) 98.41± 0.09 82.90± 0.23 82.48± 0.25 92.53± 0.62 68.86± 0.13 64.19± 0.23 61.68± 0.14
GDA (DDU, ours) 97.86± 0.19 91.34± 0.04 91.07± 0.05 87.53± 0.62 83.13± 0.06 73.12± 0.19 71.29± 0.08

entropy of the model. On the other hand, to quantify the
epistemic uncertainty, we use i) the softmax entropy, ii)
the softmax density [46] or iii) the GMM feature density
(as described in §3).

For the purposes of comparison, we also present scores
obtained by a 5-Ensemble of the respective architectures
(i.e. Wide-ResNet-28-10 and VGG-16) in Tab. 8 for CIFAR-
10 vs SVHN/CIFAR-100 and in Tab. 9 for CIFAR-100 vs
SVHN. Based on these results, we can make the following
observations (in addition to the ones we make in §4.2):

Inductive biases are important for feature density.

From the AUROC scores in Tab. 8, we can see that using the
feature density of a GMM in VGG-16 without the proposed
inductive biases yields significantly lower AUROC scores as
compared to Wide-ResNet-28-10 with inductive biases. In
fact, in none of the datasets is the feature density of a VGG
able to outperform its corresponding ensemble. This pro-
vides yet more evidence (in addition to Fig. 1) to show that
the GMM feature density alone cannot estimate epistemic
uncertainty in a model that suffers from feature collapse. We
need sensitivity and smoothness conditions (see §5) on the
feature space of the model to obtain feature densities that
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Figure 10. AUROC vs corruption intensity for all corruption types in CIFAR-10-C with Wide-ResNet-28-10 as the architecture and baselines:
Softmax Entropy, Ensemble (using Predictive Entropy as uncertainty), SNGP and DDU feature density.

capture epistemic uncertainty.
Sensitivity creates a bigger difference than smooth-

ness. We note that the difference between AUROC ob-
tained from feature density between Wide-ResNet-28-10
models with and without spectral normalisation is minimal.
Although Wide-ResNet-28-10 with spectral normalisation
(i.e. smoothness constraints) still outperforms its counterpart
without spectral normalisation, the small difference between
the AUROC scores indicates that it might be the residual
connections (i.e. sensitivity constraints) that make the model
detect OoD samples better. This observation is also intuitive
as a sensitive feature extractor should map OoD samples
farther from iD ones.

DDU as a simple baseline. In DDU, we use the softmax
output of a model to get aleatoric uncertainty. We use the
GMM’s feature-density to estimate the epistemic uncertainty.
Hence, DDU does not suffer from miscalibration as the
softmax outputs can be calibrated using post-hoc methods
like temperature scaling. At the same time, the feature-
densities of the model are not affected by temperature scaling
and capture epistemic uncertainty well.

F. Additional Ablations & Toy Experiments

Here, we provide details for toy experiments from the
main paper which are visualized in Fig. 1, Fig. 15 and Fig. 2.

Table 11. ECE for Dirty-MNIST test set and AUROC for Dirty-
MNIST vs Fashion-MNIST as proxies for aleatoric and epistemic
uncertainty quality respectively.

Model ECE AUROC for Softmax Entropy (↑) AUROC for Feature Density (↑)

LeNet 2.22 84.23 71.41

VGG-16 2.11 84.04 89.01

ResNet-18+SN (DDU) 2.34 83.01 99.91

F.1. Motivational Example in Figure 1

In Fig. 1 we train a LeNet [41], a VGG-16 [60] and a
ResNet-18 with spectral normalisation [22; 52] (ResNet-
18+SN) on Dirty-MNIST, a modified version of MNIST
[41] with additional ambiguous digits (Ambiguous-MNIST).
Ambiguous-MNIST contains samples with multiple plausible
labels and thus higher aleatoric uncertainty (see Fig. 1a).
We refer to §B for details on how this dataset was gener-
ated. With ambiguous data having various levels of aleatoric
uncertainty, Dirty-MNIST is more representative of real-
world datasets compared to well-cleaned curated datasets,
like MNIST and CIFAR-10, commonly used for benchmark-
ing in ML [13; 39]. Moreover, Dirty-MNIST also poses a
challenge for recent uncertainty estimation methods, which
often confound aleatoric and epistemic uncertainty [65]. Fig-
ure 1b shows that the softmax entropy of a deterministic
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Figure 11. AUROC vs corruption intensity for all corruption types in CIFAR-10-C with ResNet-50 as the architecture and baselines: Softmax
Entropy, Ensemble (using Predictive Entropy as uncertainty), SNGP and DDU feature density.

model is unable to distinguish between iD (Dirty-MNIST)
and OoD (Fashion-MNIST [70]) samples as the entropy for
the latter heavily overlaps with the entropy for Ambiguous-
MNIST samples. However, the feature-space density of the
model with our inductive biases in Fig. 1c captures epistemic
uncertainty reliably and is able to distinguish iD from OoD
samples. The same cannot be said for LeNet or VGG in
Fig. 1c, whose densities are unable to separate OoD from
iD samples. This demonstrates the importance of the in-
ductive bias to ensure the sensitivity and smoothness of the
feature space as we further argue below. Finally, Fig. 1b
and Fig. 1c demonstrate that our method is able to separate
aleatoric from epistemic uncertainty: samples with low fea-
ture density have high epistemic uncertainty, whereas those
with both high feature density and high softmax entropy
have high aleatoric uncertainty—note the high softmax en-
tropy for the most ambiguous Ambiguous-MNIST samples
in Fig. 1b.

F.1.1 Disentangling Epistemic and Aleatoric Uncer-
tainty

We used a simple example in §1 to demonstrate that a single
softmax model with a proper inductive bias can reliably
capture epistemic uncertainty via its feature-space density
and aleatoric uncertainty via its softmax entropy. To recreate

the natural characteristics of uncurated real-world datasets,
which contain ambiguous samples, we use MNIST [41] as
an iD dataset of unambiguous samples, Ambiguous-MNIST
as an iD dataset of ambiguous samples and Fashion-MNIST
[70] as an OoD dataset (see Fig. 1a), with more details in
§B. We train a LeNet [41], a VGG-16 [60] and a ResNet-18
[22] with spectral normalisation (SN) on Dirty-MNIST (a
mix of Ambiguous- and standard MNIST) with the training
setup detailed in §D.1.

Table 11 gives a quantitative evaluation of the qualitative
results in §1. The AUROC metric reflects the quality of the
epistemic uncertainty as it measures the probability that iD
and OoD samples can be distinguished, and OoD samples
are never seen during training while iD samples are semanti-
cally similar to training samples. The ECE metric measures
the quality of the aleatoric uncertainty. The softmax out-
puts capture aleatoric uncertainty well, as expected, and all
3 models obtain similar ECE scores on the Dirty-MNIST
test set. However, with an AUROC of around 84% for all
the 3 models, on Dirty-MNIST vs Fashion-MNIST, we con-
clude that softmax entropy is unable to capture epistemic
uncertainty well. This is reinforced in Fig. 1b, which shows
a strong overlap between the softmax entropy of OoD and
ambiguous iD samples. At the same time, the feature-space
densities of LeNet and VGG-16, with AUROC scores around
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Figure 12. AUROC vs corruption intensity for all corruption types in CIFAR-10-C with ResNet-110 as the architecture and baselines:
Softmax Entropy, Ensemble (using Predictive Entropy as uncertainty), SNGP and DDU feature density.

71% and 89% respectively, are unable to distinguish OoD
from iD samples, indicating that simply using feature-space
density without appropriate inductive biases (as seen in [43])
is not sufficient.

Only by fitting a GMM on top of a feature extractor with
appropriate inductive biases (DDU) and using its feature
density are we able to obtain performance far better (with
AUROC of 99.9%) than the alternatives in the ablation study
(see Tab. 11, also noticeable in Fig. 1c). The entropy of
a softmax model can capture aleatoric uncertainty, even
without additional inductive biases, but it cannot be used
to estimate epistemic uncertainty (see §5). On the other
hand, feature-space density can only be used to estimate
epistemic uncertainty when the feature extractor is sensitive
and smooth, as achieved by using a ResNet and spectral
normalisation in DDU.

F.2. Effects of a well-regularized feature space on
feature collapse

The effects of a well-regularized feature space on feature
collapse are visible in Fig. 1. In the case of feature collapse,
we must have some OoD inputs for which the features are
mapped on top of the features of iD inputs. The distances of
these OoD features to each class centroid must be equal to the
distances of the corresponding iD inputs to class centroids,

and hence the density for these OoD inputs must be equal
to the density of the iD inputs. If the density histograms do
not overlap, no feature collapse can be present3. We see no
overlapping densities in Fig. 1(c, right), therefore we indeed
have no feature collapse. First, the effects of having a well-
regularized feature space on feature collapse can be analysed
from Fig. 1. In case of feature collapse we must have some
OoD features mapped ontop of iD features, therefore the
distances of at least some OoD features to the class centroids
must be equal to iD’s distances, hence OoD density must
overlap with iD density. We see this in Fig. 1(c) (left) in the
case without a regularized feature space. On the other hand,
when we regularize the feature space, we see the densities
do not overlap, i.e. the distances of the features of OoD
examples to the centroids are larger than the distances of
iD examples (Fig. 1(c) right), hence feature collapse is not
present.

F.3. QUBIQ Challenge

In this section, we evaluate DDU’s performance on the
real-world QUBIQ challenge related to biomedical imag-
ing. QUBIQ has a total of 7 binary segmentation tasks in 4

3Note though that the opposite (‘if the density histograms overlap then
there must be feature collapse’) needs not hold: the histograms can also
overlap due to other reasons.
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Figure 13. AUROC vs corruption intensity for all corruption types in CIFAR-10-C with DenseNet-121 as the architecture and baselines:
Softmax Entropy, Ensemble (using Predictive Entropy as uncertainty), SNGP and DDU feature density.

Softmax Energy 3-Ensemble PE DDU

78.4± 1.31 77.31± 1.5 82.25± 0.83 82.63± 1.08

Table 12. Dice scores for the QUBIQ 2021 challenge

biomedical imaging datasets with multiple annotations per
image. The task is to predict the distribution of source labels
with a mask of values between 0 and 1. For evaluation, the
annotations are averaged to provide a continuous ground-
truth. The prediction mask and continuous ground-truth are
binarized by thresholding between [0, 1] and a Dice score is
computed between the resulting binary masks. The average
dice score across thresholds, images and tasks is reported.
Note that in the continuous ground-truth, 0.5 indicates maxi-
mum uncertainty and values above or below indicate lower
uncertainty. Thus, for our comparison, we scale all uncer-
tainty values to the range u ∈ [0, 0.5] and use p+ u if p = 0
and p − u if p = 1, where p is the binary prediction. We
use a UNet model with a ResNet encoder and report the
Dice scores averaged over 5 runs in Tab. 12. Even on this
real-world dataset, DDU performs as well as ensembles and
outperforms Softmax and Energy baselines.

F.4. Additional Baselines

In this section, we provide an ablation with additional
baselines on OoD detection for comparison with DDU. In
particular, we provide comparisons with Feature Space Sin-

gularity (FSSD) [31], Batch Ensemble (BE) [67] and SWAG
[49] using Wide-ResNet-28-10 as additional recent baselines.
We also use the Wide-ResNet-28-10 feature extractor trained
using SNGP loss and fit DDU (i.e., GDA) on its feature
space. Since SNGP also uses a sensitive smooth feature
space with residual connections and spectral normalization,
its feature space makes for a good candidate to apply DDU.
In Tab. 13, we provide the AUROC scores for models trained
on CIFAR-10 (C10) and CIFAR-100 (C100). Broadly, DDU
outperforms all competitive baselines. Additionally, we ob-
serve a broad improvement in AUROC when DDU is applied
on the SNGP feature extractor as compared to vanilla SNGP.
However, DDU on a feature extractor trained using softmax
loss is still superior to DDU on the SNGP feature extractor.

F.5. Additional Calibration Metrics

In Tab. 14, in addition to ECE%, we provide addi-
tional calibration error scores: temperature scaled Thresh-
olded Adaptive Calibration Error (TACE) % and Negative
Log Likelihood (NLL) for Wide-ResNet-28-10 trained on
CIFAR-10/100 (main results for this can be found in Tab. 1.
The results for TACE and NLL are consistent with what
we see for ECE. Ensembles produce the most calibrated
models and among deterministic baselines, DDU is the best
calibrated.



Train dataset Method AUROC (↑)
SVHN CIFAR-100/10 Tiny-ImageNet

C10

FSSD [31] 97.24 89.88 90.23
BE [67] 95.36 87.63 88.14

SWAG [49] 96.37 90.33 90.24
SNGP [45] 94.0± 1.3 91.13± 0.15 89.97± 0.19

5-Ensemble [40] 97.73± 0.31 92.13± 0.02 90.06± 0.03
SNGP + DDU 96.47± 0.7 89.97± 0.13 90.3± 0.12
DDU (Ours) 97.86± 0.19 91.34± 0.04 91.07± 0.05

C100

SVHN Tiny-ImageNet

FSSD [31] 87.64 82.2
BE [67] 86.44 78.33

SWAG [49] 81.41 81.67
SNGP [45] 85.71± 0.81 78.85± 0.43

5-Ensemble [40] 79.54± 0.91 82.95± 0.09
SNGP + DDU 87.34± 0.76 79.62± 0.36
DDU(Ours) 87.53± 0.62 83.13± 0.06

Table 13. OoD detection ablation with WRN-28-10 model with
additional baselines, FSSD [31], Batch Ensemble (BE) [67] and
SWAG [49] as well as using DDU with a feature extractor trained
on SNGP. For comparison, we also provide performance for vanilla
SNGP, deep ensemble and DDU.

Dataset Metric Softmax & Energy DUQ SNGP DDU 5-Ensemble

C10
ECE% 0.85± 0.02 1.55± 0.08 1.8± 0.1 0.85± 0.04 0.76± 0.03

TACE% 0.63± 0.01 0.84± 0.03 0.9± 0.04 0.61± 0.01 0.48± 0.01
NLL 0.18± 0.06 0.23± 0.07 0.27± 0.08 0.16± 0.06 0.11± 0.02

C100
ECE% 4.62± 0.06 - 4.33± 0.01 4.1± 0.08 3.32± 0.09

TACE% 1.31± 0.02 - 1.23± 0.04 1.06± 0.03 0.58± 0.03
NLL 1.17± 0.13 - 0.92± 0.16 0.86± 0.14 0.73± 0.09

Table 14. Calibration error scores ECE%, TACE% and NLL for
WRN-28-10.

F.6. Two Moons

In this section, we evaluate DDU’s performance on a
well-known toy setup: the Two Moons dataset. We use
scikit-learn’s datasets package to generate 2000 samples
with a noise rate of 0.1. We use a 4-layer fully connected
architecture, ResFFN-4-128 with 128 neurons in each layer
and a residual connection, following [45]. As an ablation,
we also train using a 4-layer fully connected architecture
with 128 neurons in each layer, but without the residual
connection. We name this architecture FC-Net. The input
is 2-dimensional and is projected into the 128 dimensional
space using a fully connected layer. Using the ResFFN-4-
128 architecture we train 3 baselines:
1. Softmax: We train a single softmax model and use the

softmax entropy as the uncertainty metric.
2. 3-ensemble: We train an ensemble of 3 softmax models

and use the predictive entropy of the ensemble as the
measure of uncertainty.

3. DDU: We train a single softmax model applying spectral
normalization on the fully connected layers and using the
feature density as the measure of model confidence.
Each model is trained using the Adam optimiser for 150

epochs. In Fig. 14, we show the uncertainty results for all the
above 3 baselines. It is clear that both the softmax entropy
as well as the predictive entropy of the ensemble is uncertain
only along the decision boundary between the two classes
whereas DDU is confident only on the data distribution and is
not confident anywhere else. It is worth mentioning that even
DUQ and SNGP perform well in this setup and deep ensem-
bles have been known to underperform in the Two-Moons
setup primarily due to the simplicity of the dataset causing all
the ensemble components to generalise in the same way. Fi-

nally, also note that the feature space density of FC-Net with-
out residual connections is not able to capture uncertainty
well (see Fig. 14d), thereby reaffirming our claim that proper
inductive biases are indeed a necessary component to ensure
that feature space density captures uncertainty reliably. Thus,
in addition to its excellent performance in active learning,
CIFAR-10 vs SVHN/CIFAR-100/Tiny-ImageNet/CIFAR-
10-C, CIFAR-100 vs SVHN/Tiny-ImageNet, and ImageNet
vs ImageNet-O, we note that DDU captures uncertainty reli-
ably even in a small 2D setup like Two Moons.

F.7. 5-Ensemble Visualisation

In Fig. 15, we provide a visualisation of a 5-ensemble
(with five deterministic softmax networks) to see how soft-
max entropy fails to capture epistemic uncertainty precisely
because the mutual information (MI) of an ensemble does
not (see §5). We train the networks on 1-dimensional data
with binary labels 0 and 1. The data is shown in Fig. 15a.
From Fig. 15a and Fig. 15b, we find that the softmax entropy
is high in regions of ambiguity where the label can be both 0
and 1 (i.e. x between -4.5 and -3.5, and between 3.5 and 4.5).
This indicates that softmax entropy can capture aleatoric un-
certainty. Furthermore, in the x interval (−2, 2), we find that
the deterministic softmax networks disagree in their predic-
tions (see Fig. 15a) and have softmax entropies which can be
high, low or anywhere in between (see Fig. 15b) following
our claim in §5. In fact, this disagreement is the very reason
why the MI of the ensemble is high in the interval (−2, 2),
thereby reliably capturing epistemic uncertainty. Finally,
note that the predictive entropy (PE) of the ensemble is high
both in the OoD interval (−2, 2) as well as at points of ambi-
guity (i.e. at -4 and 4). This indicates that the PE of a Deep
Ensemble captures both epistemic and aleatoric uncertainty
well. From these visualisations, we draw the conclusion that
the softmax entropy of a deterministic softmax model cannot
capture epistemic uncertainty precisely because the MI of a
Deep Ensemble can.

F.8. Feature-Space Density & Epistemic Uncer-
tainty vs Softmax Entropy & Aleatoric Un-
certainty

To empirically verify the connection between feature-
space density and epistemic uncertainty on the one hand and
the connection between softmax entropy and aleatoric un-
certainty on the other hand, we train ResNet-18+SN models
on increasingly large subsets of DirtyMNIST and CIFAR-10
and evaluate the epistemic and aleatoric uncertainty on the
corresponding test sets using the feature-space density and
softmax entropy, respectively. Moreover, we also train a
5-ensemble on the same subsets of data and use the ensem-
ble’s mutual information as a baseline measure of epistemic
uncertainty.

In Fig. 2, Fig. 16 and Tab. 15, we see that with larger
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Figure 14. Uncertainty on Two Moons dataset. Blue indicates high uncertainty and yellow indicates low uncertainty. Both the softmax
entropy of a single model as well as the predictive entropy of a deep ensemble are uncertain only along the decision boundary whereas the
feature-space density of DDU is uncertain everywhere except on the data distribution (the ideal behaviour). However, the feature density of a
normal fully connected network (FC-Net) without any inductive biases can’t capture uncertainty properly.
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Figure 15. Softmax outputs & entropies for 5 softmax models along with the predictive entropy (PE) and mutual information (MI) for the
resulting 5-Ensemble. (a) and (b) show that the softmax entropy is only reliably high for ambiguous iD points (±3.5–4.5), whereas it can be
low or high for OoD points (-2–2). The different colors are the different ensemble components. Similarly, (c) shows that the MI of the
ensemble is only high for OoD, whereas the PE is high for both OoD and for regions of ambiguity. See §F.7.
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Figure 16. Comparison of epistemic and aleatoric uncertainty captured b(ResNet-18+SN) on increasingly large subsets of Dirty-MNIST and
CIFAR-10. Clearly, feature density captures epistemic uncertainty which reduces when the model is trained on increasingly large subsets
of training data, whereas softmax entropy (SE) does not. For comparison, we also plot a deep-ensemble’s epistemic uncertainty, through
mutual information (MI) for the same settings. For more details, see Tab. 15.

training sets, the average feature-space density increases
which is consistent with the epistemic uncertainty decreasing
as more data is available as reducible uncertainty. This is
also evident from the consistent strong positive correlation
between the negative log density and mutual information of
the ensemble.

On the other hand, the softmax entropy stays roughly
the same which is consistent with aleatoric uncertainty as
irreducible uncertainty, which is independent of the training
data. Importantly, all of this is also consistent with the
experiments comparing epistemic and aleatoric uncertainty
on increasing training set sizes in Table 3 of [33].

F.9. Objective Mismatch Ablation with Wide-
ResNet-28-10 on CIFAR-10

We further validate Proposition 5.3 by running an ablation
on Wide-ResNet-28-10 on CIFAR-10. Table 16 shows that
the feature-space density estimator indeed performs worse
than the softmax layer for aleatoric uncertainty (accuracy
and ECE).
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Figure 17. 3-component GMM fitted to a synthetic dataset with 3 different classes (differently colored) with 4% label noise using different
objectives. (a): The optimas for conditional log-likelihood Hθ[Y | Z], joint log-likelihood Hθ[Y,Z], and marginalised log-likehood Hθ[Z]
all differ. Hence, the best calibrated model (Hθ[Y | Z]) will not provide the best density estimate (Hθ[Z]), and vice-versa. (b): A mixture
model that optimizes Hθ[Y,Z] (GDA) does not have calibrated decision boundaries for aleatoric uncertainty: the ambiguous sample (due to
label noise) marked by the yellow star has no aleatoric uncertainty under the GDA model. See §G.2.3 for details.

Table 15. Average softmax entropy (SE) and feature-space den-
sity of the test set for models trained on different amounts of the
training set (Dirty-MNIST and CIFAR-10) behave consistently with
aleatoric and epistemic uncertainty. Aleatoric uncertainty for
individual samples does not change much as more data is added
to the training set while epistemic uncertainty decreases as more
data is added. This is also consistent with Table 3 in [33]. Finally,
we observe a consistent strong positive correlation between the
negative log feature space density and the mutual information (MI)
of a deep ensemble trained on the same subsets of data for both
Dirty-MNIST and CIFAR-10. However, the correlation between
softmax entropy and MI is not consistent.

Training Set Avg Test SE (≈) Avg Test Log GMM Density (↑) Avg Test MI Correlation(SE || MI) Correlation(-Log GMM Density || MI)

1% of D-MNIST 0.7407 −2.7268e+ 14 0.0476

−0.79897 0.81322% of D-MNIST 0.6580 −7.8633e+ 13 0.0447

10% of D-MNIST 0.8295 −1279.1753 0.0286

10% of CIFAR-10 0.3189 −1715.3516 0.4573

0.5663 0.955620% of CIFAR-10 0.2305 −1290.1726 0.2247

100% of CIFAR-10 0.2747 −324.8040 0.0479

Table 16. Objective Mismatch Ablation with WideResNet-28-10
models with and without spectral normalisation on CIFAR-10.
While GMMs perform much better than Softmax Entropy for
feature-space density/epistemic uncertainty estimation, they un-
derperform for aleatoric uncertainty estimation: both accuracy and
in particular ECE are much worse than a regular softmax layer.
Averaged over 25 runs.

Model Prediction Source Accuracy in % (↑) ECE (↓)

WideResNet-28-10 Softmax 95.98± 0.02 2.29± 0.02

GMM 95.86± 0.02 4.13± 0.02

WideResNet-28-10+SN Softmax 95.97± 0.03 2.23± 0.03

GMM 95.88± 0.02 4.12± 0.02

G. Theoretical Results

G.1. Softmax entropy “cannot” capture epistemic
uncertainty because Deep Ensembles “can”

G.1.1 Qualitative Statement

We start with a proof of Proposition 5.2, which quantitatively
examines the qualitative statemets that given the same pre-
dictive entropy, higher epistemic uncertainty for one point

than another will cause some ensemble members to have
lower softmax entropy.

Proposition 5.2. Let x1 and x2 be points such that x1 has
higher epistemic uncertainty than x2 under the ensemble:
I[Y1;ω |x1,D] > I[Y2;ω |x2,D]+δ, δ ≥ 0. Further assume
both have similar predictive entropy |H[Y1 |x1,D]−H[Y2 |
x2,D]| ≤ ε, ε ≥ 0. Then, there exist sets of ensemble
members Ω with p(Ω | D) > 0, such that for all softmax
models ω ∈ Ω the softmax entropy of x1 is lower than the
softmax entropy of x2: H[Y1 |x1, ω] < H[Y2 |x2, ω]−(δ−ε).

Proof. From Eq. (1), we obtain

| I[Y1;ω | x1,D] + Ep(ω|D) [H[Y1 | x1, ω]]

− I[Y2;ω | x2,D]− Ep(ω|D) [H[Y2 | x2, ω]] | ≤ ε.
(2)

and hence we have

Ep(ω|D) [H[Y1 | x1, ω]]− Ep(ω|D) [H[Y2 | x2, ω]]

+ (I[Y1;ω | x1,D]− I[Y2;ω | x2,D])︸ ︷︷ ︸
>δ

≤ ε. (3)

We rearrange the terms:

Ep(ω|D) [H[Y1 | x1, ω]] < Ep(ω|D) [H[Y2 | x2, ω]]− (δ− ε).
(4)

Now, the statement follows by contraposition: if
H[Y1 | x1, ω] ≥ Ep(ω|D) [H[Y2 | x2, ω]] − (δ − ε) for
all ω, the monotonicity of the expectation would yield
Ep(ω|D) [H[Y1 | x1, ω]] ≥ Ep(ω|D) [H[Y2 | x2, ω]]− (δ− ε).
Thus, there is a non-null-set Ω′ with p(Ω′) > 0, such that

H[Y1 | x1, ω] < H[Y2 | x2, ω]− (δ − ε), (5)

for all ω ∈ Ω′.

While this statement provides us with an intuition for why
ensemble members and thus deterministic models cannot
provide epistemic uncertainty reliably through their softmax
entropies, we can examine this further by establishing some
upper bounds.



G.1.2 Infinite Deep Ensemble

There are two interpretations of the ensemble parameter dis-
tribution p(ω |D): we can view it as an empirical distribution
given a specific ensemble with members ωi∈{1,...,K}, or we
can view it as a distribution over all possible trained models,
given: random weight initializations, the dataset, stochas-
ticity in the minibatches and the optimization process. In
that case, any Deep Ensemble with K members can be seen
as finite Monte-Carlo sample of this posterior distribution.
The predictions of an ensemble then are an unbiased esti-
mate of the predictive distribution Ep(ω|D) [p(y|x, ω|)], and
similarly the expected information gain computed using the
members of the Deep Ensemble is just a (biased) estimator
of I[Y ;ω | x,D].

G.1.3 Analysis of Softmax Entropy of a Single Deter-
ministic Model on OoD Data using Properties of
Deep Ensembles

Based on the interpretation of Deep Ensembles as a dis-
tribution over model parameters, we can walk backwards
and, given some value for the predictive distribution and
epistemic uncertainty of a Deep Ensemble, estimate what
the softmax entropies from each ensemble component must
have been. I.e. if we observe Deep Ensembles to have high
epistemic uncertainty on OoD data, we can deduce from that
what the softmax entropy of deterministic neural nets (the
ensemble components) must look like. More specifically,
given a predictive distribution p(y | x) and epistemic uncer-
tainty, that is expected information gain I[Y ;ω | x], of the
infinite Deep Ensemble, we estimate the expected softmax
entropy from a single deterministic model, considered as a
sample ω ∼ p(ω | D) and model the variance. Empirically,
we find the real variance to be higher by a large amount for
OoD samples, showing that softmax entropies do not capture
epistemic uncertainty well for samples with high epistemic
uncertainty.

We will need to make several strong assumptions that
limit the generality of our estimation, but we can show that
our analysis models the resulting softmax entropy distri-
butions appropriately. This will show that deterministic
softmax models can have widely different entropies and
confidence values.

Given the predictive distribution p(y | x) and epistemic
uncertainty I[Y ;ω | x], we can approximate the distribution
over softmax probability vectors p(y|x, ω) for different ω
using its maximum-entropy estimate: a Dirichlet distribution
(Y1, . . . , YK) ∼ Dir(α) with non-negative concentration
parameters α = (α1, . . . , αK) and α0 :=

∑
αi. Note that

the Dirichlet distribution is used only as an analysis tool, and
at no point do we need to actually fit Dirichlet distributions
to our data.

Preliminaries

Before we can establish our main result, we need
to look more closely at Dirichlet-Multinomial distribu-
tions. Given a Dirichlet distribution Dir(α) and a ran-
dom variable p ∼ Dir(α), we want to quantify the ex-
pected entropy Ep∼Dir(α) HY∼Cat(p)[Y ] and its variance
Varp∼Dir(α) HY∼Cat(p)[Y ]. For this, we need to develop
more theory. In the following, Γ denotes the Gamma func-
tion, ψ denotes the Digamma function, ψ′ denotes the
Trigamma function.

Lemma G.1. Given a Dirichlet distribution and random
variable p ∼ Dir(α), the following hold:
1. The expectation E [logpi] is given by:

E [logpi] = ψ(αi)− ψ(α0). (6)

2. The covariance Cov[logpi, logpj ] is given by

Cov[logpi, logpj ] = ψ′(αi) δij − ψ′(α0). (7)

3. The expectation E
[
pni p

m
j logpi

]
is given by:

E
[
pni p

m
j logpi

]
=
αni α

m
j

αn+m
0

(ψ(αi + n)− ψ(α0 + n+m)) ,
(8)

where i 6= j, and nk = n (n+ 1) . . . (n+ k − 1) denotes
the rising factorial.

Proof. 1. The Dirichlet distribution is members of the ex-
ponential family. Therefore the moments of the sufficient
statistics are given by the derivatives of the partition function
with respect to the natural parameters. The natural param-
eters of the Dirichlet distribution are just its concentration
parameters αi. The partition function is

A(α) =

k∑
i=1

log Γ (αi)− log Γ (α0) , (9)

the sufficient statistics is T (x) = log x, and the expectation
E [T ] is given by

E [Ti] =
∂A(α)

∂αi
(10)

as the Dirichlet distribution is a member of the exponential
family. Substituting the definitions and evaluating the partial
derivative yields

E [logpi] =
∂

∂αi

[
k∑
i=1

log Γ (αi)− log Γ

(
k∑
i=1

αi

)]
(11)

= ψ (αi)− ψ (α0)
∂

∂αi
α0, (12)



where we have used that the Digamma function ψ is the log
derivative of the Gamma function ψ(x) = d

dx ln Γ(x). This
proves (6) as ∂

∂αi
α0 = 1.

2. Similarly, the covariance is obtained using a second-order
partial derivative:

Cov[Ti, Tj ] =
∂2A(α)

∂αi ∂αi
. (13)

Again, substituting yields

Cov[logpi, logpj ] =
∂

∂αj
[ψ (αi)− ψ (α0)] (14)

= ψ′ (αi) δij − ψ′ (α0) . (15)

3. We will make use of a simple reparameterization to prove
the statement using Eq. (6). Expanding the expectation and
substituting the density Dir(p;α), we obtain

E
[
pni p

m
j logpi

]
=

∫
Dir(p;α)pni p

m
j logpi dp (16)

=

∫
Γ (α0)∏K
i=1 Γ (αi)

K∏
k=1

pαk−1
k pni p

m
j logpi dp (17)

=
Γ(αi + n)Γ(αj +m)Γ(α0 + n+m)

Γ(αi)Γ(αj)Γ(α0)∫
Dir(p̂; α̂) p̂ni p̂

m
j log p̂i dp̂

(18)

=
αni α

m
j

αn+m
0

E [log p̂i] , (19)

where p̂ ∼ Dir(α̂) with α̂ = (α0, . . . , αi + n, . . . , αj +

m, . . . , αK) and we made use of the fact that Γ(z+n)
Γ(z) = zn.

Finally, we can apply Eq. (6) on p̂ ∼ Dir(α̂) to show

=
αni α

m
j

αn+m
0

(ψ(αi + n)− ψ(α0 + n+m)) . (20)

With this, we can already quantify the expected entropy
Ep∼Dir(α) HY∼Cat(p)[Y ]:

Lemma G.2. Given a Dirichlet distribution and a ran-
dom variable p ∼ Dir(α), the expected entropy
Ep∼Dir(α) HY∼Cat(p)[Y ] of the categorical distribution
Y ∼ Cat(p) is given by

Ep(p|α) H[Y | p] = ψ(α0 + 1)−
K∑
y=1

αi
α0
ψ(αi + 1). (21)

Proof. Applying the sum rule of expectations and Eq. (8)
from Lemma G.1, we can write

E H[Y | p] = E

[
−

K∑
i=1

pi logpi

]
= −

∑
i

E [pi logpi]

(22)

= −
∑
i

αi
α0

(ψ(αi + 1)− ψ(α0 + 1)) . (23)

The result follows after rearranging and making use of∑
i
αi
α0

= 1.

With these statements, we can answer a slightly more
complex problem:

Lemma G.3. Given a Dirichlet distribution and
a random variable p ∼ Dir(α), the covariance
Cov[pni logpi,p

m
j logpj ] is given by

Cov[pni logpi,p
m
j logpj ] (24)

=
αni α

m
j

αn+m
0

((ψ(αi + n)− ψ(α0 + n+m))

(ψ(αj +m)− ψ(α0 + n+m))

−ψ′(α0 + n+m))

+
αni α

m
j

αn0 α
m
0

(ψ(αi + n)− ψ(α0 + n))

(ψ(αj +m)− ψ(α0 + n)),

(25)

for i 6= j, where ψ is the Digamma function and ψ′

is the Trigamma function. Similarly, the covariance
Cov[pni logpi,p

m
i logpi] is given by

Cov[pni logpi,p
m
i logpi] (26)

=
αn+m
i

αn+m
0

(
(ψ(αi + n+m)− ψ(α0 + n+m))2

+ ψ′(αi + n+m)− ψ′(α0 + n+m))

+
αni α

m
i

αn0 α
m
0

(ψ(αi + n)− ψ(α0 + n))

(ψ(αi +m)− ψ(α0 + n)).

(27)

Regrettably, the equations are getting large. By abuse
of notation, we introduce a convenient shorthand before
proving the lemma.

Definition G.4. We will denote by

E [log p̂n,mi ] = ψ(αi + n)− ψ(α0 + n+m), (28)

and use E [log p̂ni ] for E
[
log p̂n,0i

]
. Likewise,

Cov[log p̂n,mi , log p̂n,mj ] = ψ′(αi + n)δij − ψ′(α0 + n+m).

(29)



This notation agrees with the proof of Eq. (6) and (7) in
Lemma G.1. With this, we can significantly simplify the
previous statements:

Corollary G.5. Given a Dirichlet distribution and random
variable p ∼ Dir(α),

E
[
pni p

m
j logpi

]
=
αni α

m
j

αn+m
0

E [log p̂n,mi ], (30)

Cov[pni logpi,p
m
j logpj ] (31)

=
αni α

m
j

αn+m
0

(
E [log p̂n,mi ]E

[
log p̂m,nj

]
Cov[log p̂n,mi , log p̂n,mj ]

)
+
αni α

m
j

αn0 α
m
0

E [log p̂ni ]E
[
log p̂mj

]
for i 6= j, and

(32)

Cov[pni logpi,p
m
i logpi] (33)

=
αn+m
i

αn+m
0

(
E
[
log p̂n+m

i

]2
+Cov[log p̂n+m

i , log p̂n+m
i ]

)
+
αni α

m
i

αn0 α
m
0

E [log p̂ni ]E
[
log p̂mj

]
.

(34)

Proof of Lemma G.3. This proof applies the well-know for-
mula (cov) Cov[X,Y ] = E [X Y ] − E [X]E [Y ] once for-
ward and once backward (rcov) E [X Y ] = Cov[X,Y ] +
E [X]E [Y ] while applying Eq. (8) several times:

Cov[pni logpi,p
m
j logpj ] (35)

cov
= E

[
pni log(pi)p

m
j log(pj)

]
− E [pni logpi]E

[
pmj logpj

] (36)

=
αni α

m
j

αn+m
0

E
[
log(p̂i,ji ) log(p̂i,jj )

]
− E

[
log p̂ii

]
E
[
logpjj

] (37)

(rcov)
=

αni α
m
j

αn+m
0

(
Cov[log p̂i,ji , log p̂i,jj ]

+E
[
log p̂i,ji

]
E
[
log p̂i,jj

])
−
αni α

m
j

αn0 α
m
0

E
[
log p̂ii

]
E
[
logpjj

]
,

(38)

where pi,j ∼ Dir(αi,j) with αi,j = (. . . , αi + n, . . . , αj +
m, . . .). pi/j and αi/j are defined analogously. Applying
Eq. (7) and Eq. (6) from Lemma G.1 yields the statement.
For i = j, the proof follows the same pattern.

Now, we can prove the theorem that quantifies the vari-
ance of the entropy of Y :

Theorem G.6. Given a Dirichlet distribution and a ran-
dom variable p ∼ Dir(α), the variance of the entropy
Varp∼Dir(α) HY∼Cat(p)[Y ] of the categorical distribution
Y ∼ Cat(p) is given by

Var[H[Y | p]] (39)

=
∑
i

α2
i

α2
0

(
Cov[log p̂2

i , log p̂2
i ] + E [log p̂2

i ]
2
)

+
∑
i 6=j

αi αj

α2
0

(
Cov[log p̂1

i , log p̂1
j ]

+E
[
log p̂1,1

i

]
E
[
log p̂1,1

j

])
−
∑
i,j

αi αj
α2

0

E [log p̂1
i ]E

[
log p̂1

j

]
.

(40)

Proof. We start by applying the well-known formula
Var[

∑
iXi] =

∑
i,j Cov[Xi, Xj ] and then apply

Lemma G.3 repeatedly.

Main Result

Given that we can view an ensemble member as a sin-
gle deterministic model and vice versa, this provides an
intuitive explanation for why single deterministic models
report inconsistent and widely varying predictive entropies
and confidence scores for OoD samples for which a Deep
Ensemble would report high epistemic uncertainty (expected
information gain) and high predictive entropy.

Assuming that p(y|x, ω) only depends on p(y | x) and
I[Y ;ω | x], we model the distribution of p(y|x, ω) (as a
function of ω) using a Dirichlet distribution Dir(α) which
satisfies:

p(y | x) =
αi
α0

(41)

H[Y | x]− I[Y ;ω | x] = ψ(α0 + 1) (42)

−
K∑
y=1

p(y | x)ψ(α0 p(y | x) + 1)..

(43)

Then, we can model the softmax distribution using a random
variable p ∼ Dir(α) as:

p(y | x, ω)
≈∼ Cat(p). (44)

The variance Var[H[Y | x, ω]] of the softmax entropy for
different samples x given p(y | x) and I[Y ;ω | x] is then
approximated by Var[H[Y | p]]:

Varω[H[Y | x, ω]] ≈ Varp[H[Y | p]] (45)



with the latter term given in eq. (40). We empirically find this
to provide a lower bound on the true variance Varω[H[Y |
x, ω]].

Empirical Results

We empirically verify that softmax entropies vary con-
siderably in Fig. 18. In Fig. 19, we verify that the predicted
softmax entropy variance indeed lower-bounds the empirical
softmax entropy variance. Morever, Fig. 19c shows both i)
the non-linear relationship between epistemic uncertainty
and variance in the softmax entropies and ii) that Dirichlet
distributions cannot capture it and can only provide a lower
bound. Nonetheless, this simple approximation seems to be
able to capture the empirical entropy distribution quite well
as shown in Fig. 20.

G.2. Objective Mismatch

In §5, we noted that the objectives that lead to optimal
estimators for aleatoric and epistemic uncertainty via soft-
max entropy and feature-space density do not match, and
DDU therefore uses the softmax layer as a discriminative
classifier (implicit LDA) to estimate the predictive entropy,
while it is using a GMM as generative classifier to estimate
the feature-space density. Here we prove this.

G.2.1 Preliminaries

Before we prove Proposition 5.3, we will introduce some
additional notation following [36].

Definition G.7. 1. p̂(y, z) is the data distribution of the D
in feature space with class labels y and feature representation
z.
2. pθ(·) is a probability distribution parameterized by θ.
3. Entropies and conditional entropies are over the empirical
data distribution p̂(·):

H[·] = H (p̂(·)) = Ep̂(·) [− log p̂(·)] . (46)

4. H[Y | z] is the entropy of p̂(y | z) for a given z, whereas
H[Y | Z] is the conditional entropy:

H[Y | Z] = Ep̂(z) H[Y | z]. (47)

5. H(p(y, z) ||q(y|z|)) is the cross-entropy of q(y |z) under
p(y | z) in expectation over p(z):

H(p(y, z) || q(y | z)) = Ep(z) H(p(y | z) || q(y | z))
= Ep(y,z) [− log q(y | z)] .

6. Similarly,DKL(p(y, z) ||q(y|z|)) is the Kullback-Leibler
divergence of q(y |z) under p(y |z) in expectation over p(z):

DKL(p(y, z) || q(y|z|)) = Ep(z)DKL(p(y | z) || q(y|z|))
= H(p(y, z) || q(y|z|))−H[Y | Z]

7. For cross-entropies of pθ(·) under p̂(z, y), we use the
convenient short-hand Hθ[·] = H(p̂(z, y) || pθ(·)).

Then we can observe the following connection between
Hθ[·] and H[·]:

Lemma G.8. Cross-entropies upper-bound the respective
entropy with equality when pθ(·) = p̂(·), which is important
for variational arguments:

1. Hθ[Y, Z] ≥ H[Y,Z],
2. Hθ[Z] ≥ H[Z], and
3. Hθ[Y | Z] ≥ H[Y | Z].

Proof. 1. Hθ[Y,Z]−H[Y,Z] = DKL(p̂(y, z)||pθ(y, z)) ≥
0.
2. follows from Item 1.
3. We expand the expectations and note that inequality com-
mutes with expectations:

Hθ[Y | Z]−H[Y | Z] = Ep̂(z) [Hθ[Y | z]−H[Y | z]] ≥ 0,

because Hθ[Y | z]−H[Y | z] ≥ 0 for all z. The equality con-
ditions follows from the properties of the Kullback-Leibler
divergence as well.

We also have:

Lemma G.9.

Hθ[Y,Z] = Hθ[Y | Z] + Hθ[Z] (48)
= Hθ[Z | Y ] + Hθ[Y ]. (49)

Proof. We substitute the definitions and obtain:

Hθ[Y,Z] = Ep(y,z) [− log q(y, z)] (50)
= Ep(y,z) [− log q(y | z)] + Ep(y,z) [− log q(z)]

(51)

= Hθ[Y | Z] + Hθ[Z]. (52)

The same holds for entropies: H[Y, Z] = H[Y | Z] +
H[Z] = H[Y | Z] + H[Y ] [5].

G.2.2 Proof

We can now prove the observation.

Proposition 5.3. For an input x, let z = fθ(x) denote its
feature representation in a feature extractor fθ with parame-
ters θ. Then the following hold:
1. A discriminative classifier p(y | z), e.g. a softmax layer,

is well-calibrated in its predictions when it maximises the
conditional log-likelihood log p(y | z);

2. A feature-space density estimator q(z) is optimal when it
maximises the marginalised log-likelihood log q(z);
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Figure 18. Softmax entropy histograms of 30 Wide-ResNet-28-10+SN models trained on CIFAR-10, evaluated on SVHN (OoD). The
softmax entropy distribution of the different models varies considerably.
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Figure 19. The variance of softmax entropies can be lower-bounded by fitting Dirichlet distributions on the samples p(y | x, ω). (a) The
empirical variance of softmax entropies is lower-bounded by Var[H[Y | p]]. The red dashed line depicts equality. (b) The ratio histogram
shows that there are only few violations due to precision issues (< 2%).(c) The variance of the softmax entropy is not linearly correlated to
the epistemic uncertainty. For both high and low epistemic uncertainty, the variance decreases.
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Figure 20. Simulated vs empirical softmax entropy on WideResNet-
28-10+SN and VGG16. Even though the Dirichlet variance ap-
proximation lower-bounds the empirical softmax entropy variance,
sampling from the fitted Dirichlet distributions does approximate
the empirical entropy distribution quite well.

3. A mixture model q(y, z) =
∑
y q(z | y) q(y) might not

maximise both objectives, conditional log-likelihood and
marginalised log-likelihood, at the same time. In the
specific instance that a GMM with one component per
class does maximise both, the resulting model must be a
GDA (but the opposite does not hold).

Proof. 1. The conditional log-likelihood is a strictly proper
scoring rule [17]. The optimization objective can be rewrit-
ten as

max
θ

Elog pθ(y|z) = min
θ

Hθ[Y | Z] ≥ H[Y | Z]. (53)

An optimal discriminative classifier pθ(y | z) would thus
capture the true (empirical) distribution everywhere: pθ(y |
z) = p̂(y | z). This means the negative conditional log-
likelihood will be equal H[Y | Z] and Hθ[Y | z] = H[Y | z]
for all z.
2. For density estimation q(z), the maximum likelihood
E [log q(z)] using the empirical data distribution is maxi-
mized. We can rewrite this as

max
θ

Ep̂(y,z) log pθ(z) = min
θ

Hθ[Z] ≥ H[Z]. (54)

We see that the negative marginalized likelihood of the den-
sity estimator upper-bounds the entropy of the feature repre-
sentations H[Z]. We have equality and pθ(z) = p̂(z) in the
optimum case.
3. Using Hθ[Y,Z] = Hθ[Y | Z] + Hθ[Z], we can relate the
objectives from Eq. (53) and (54) to each other. First, we
characterize a shared optimum, and then we show that both
objectives are generally not minimized at the same time. For
both objectives to be minimized, we have ∇Hθ[Y | Z] = 0
and ∇Hθ[Z] = 0, and we obtain

∇Hθ[Y, Z] = ∇Hθ[Y | Z] +∇Hθ[Z] = 0. (55)

From this we conclude that minimizing both objectives also
minimizes Hθ[Y,Z], and that generally the objectives trade-



off with each other at stationary points θ of Hθ[Y,Z]:

∇Hθ[Y | Z] = −∇Hθ[Z] when ∇Hθ[Y, Z] = 0. (56)

This tells us that to construct a case where the optima do not
coincide, discriminative classification needs to be opposed
better density estimation.

Specifially, when we have a GMM with one component
per class, minimizing Hθ[Y,Z] on an empirical data distri-
bution is equivalent to Gaussian Discriminant Analysis, as is
easy to check, and minimizing Hθ[Z] is equivalent to fitting
a density estimator, following Eq. (54). The difference is
that using a GMM as a density estimator does not constrain
the component assignment, unlike in GDA.

Consequently, we see that both objectives can be mini-
mized at the same time exactly when the feature representa-
tions of different classes are perfectly separated, such that
a GMM fit as density estimator would assign each class’s
feature representations to a single component.

By the above, we can construct a simple case: if the sam-
ples of different classes are not separated in feature-space,
optimas for the objectives will not coincide, so for example
if samples were drawn from the same Gaussian and labeled
randomly. On the other hand, if we have classes whose fea-
tures lie in well-separated clusters, GDA will minimize all
objectives.

Given that perfect separation is impossible with ambigu-
ous data for a GMM, a shared optimum will be rare with
noisy real-world data, but only then would GDA be optimal.
In all other cases, GDA does not optimize both objectives,
and neither can any other GMM with one component per
class. Moreover, Eq. (56) shows that a GMM fit using EM
is a better density estimator than GDA, and a softmax layer
is a better classifier, as optimizing the softmax objective
Hθ[Y | Z] or density objective H[Z] using gradient descent
will move away from the GDA optimum.

As can easily be verified, a trivial optimal minimizer
q∗(y, z) for Hθ[Y,Z] given an empirical data distribution
p̂(y, z) is an adapted Parzen estimator:

q∗(y, z) =
∑
y

p̂(y)Eẑ∼p̂(z|y)N (z; ẑ, σ2I), (57)

for small enough σ. This shows that above proposition is not
general.

G.2.3 Intuitions & Validation with a Toy Example

Figure 17 visualises this on a synthetic 2D dataset with three
classes and 4% label noise, which causes the optima to di-
verge as described in the proof. Label noise is a common
issue in real-world datasets. Non-separability even more so.
To explain Proposition 5.3 in an intuitive way, we focus on

on a simple 2D toy case and fit a GMM using the different
objectives. We sample "latents" z from 3 Gaussians (each
representing a different class y) with 4% label noise. Follow-
ing the construction in the proof, this will lead the objectives
to have different optima.

We know discuss the different objectives in Fig. 17 and
the resulting scores in more detail:

minHθ[Y | Z]. A softmax linear layer is equivalent to
an LDA (Linear Discriminant Analysis) with conditional
likelihood as detailed in [54], for example. We optimize an
LDA with the usual objective "min−1/N

∑
log p(y | z)",

i.e. the cross-entropy of p(y | z) or (average) negative log-
likelihood (NLL). Following Definition G.7, we use the
short-hand "minHθ[Y | Z]" for this cross-entropy.

Because we optimize only p(y|z), p(z) does not affect the
objective and is thus not optimized. Indeed, the components
do not actually cover the latents well, as can be seen in the
first density plot of Fig. 17a. However, it does provide the
lowest NLL.

minHθ[Y, Z]. We optimize a GDA for the combined
objective "min−1/N

∑
log q(y, z)", i.e. the cross-entropy

of q(y, z). We use the short-hand "minHθ[Y | Z]" for this.
minHθ[Z]. We optimize a GMM for the objective

"min−1/N
∑

log q(z)", i.e. the cross-entropy of q(z). We
use the short-hand "minHθ[Z]" for this.

We do not provide scores for Hθ[Y | Z] and Hθ[Y,Z]
for the third objective minHθ[Z] in Tab. 17 as it does not
depend on Y , and hence the different components do not
actually model the different classes necessarily. Hence, we
also use a single color to visualize the components for this
objective in Fig. 17a.

In Tab. 17 and Fig. 17a, we see that each solution mini-
mizes its own objective best. The GMM provides the best
density model (best fit according to the entropy), while the
LDA (like a softmax linear layer) provides the best NLL for
the labels. The GDA provides a density model that is almost
as good.

Entropy. Looking at the entropy plots in Fig. 17b, we
first notice that the LDA solution optimized for minHθ[Y |
Z] has a wide decision boundary. This is due to the overlap

Table 17. Realized objective scores (columns) for different optimiza-
tion objectives (rows) for the synthetic 2D toy example depicted in
Fig. 17. Smaller is better. We see that each objectives minimizes its
own score while being suboptimal in regards to the other two objec-
tives (when it is possible to compute the scores). This empirically
further validates Proposition 5.3.

Objective Hθ[Y | Z] (↓) Hθ[Y, Z] (↓) Hθ[Z] (↓)

minHθ[Y | Z] 0.1794 5.4924 5.2995
minHθ[Y,Z] 0.2165 4.9744 4.7580
minHθ[Z] n/a n/a 4.7073



of the Gaussian components, which is necessary to provide
the right aleatoric uncertainty.

Optimizing the negative log-likehood − log p(y | z) is a
proper scoring rule, and hence is optimized for calibrated
predictions.

Compared to this, the GDA solution (optimized for
minHθ[Y,Z] has a much narrower decision boundary and
cannot capture aleatoric uncertainty as well. This is reflected
in the higher NLL. Moreover, unlike for LDA, GDA decision
boundaries behave differently than one would naively expect
due to the untied covariance matrices. They can be curved
and the decisions change far away from the data [54].

To show the difference between the two objectives we
have marked an ambiguous point near (0,−5) with a yel-
low star . Under the first objective minHθ[Y,Z], the
point has high aleatoric uncertainty (high entropy), as seen
in the left entropy plot while under the second objective
(minHθ[Y,Z]) the point is only assigned very low entropy.
The GDA optimized for the second objective thus is over-
confident.

As above explained above, we do not show an entropy
plot of Y | Z for the third objective minHθ[Z] in Fig. 17b
because the objective does not depend on Y , and there are
thus no class predictions.

Intuitively, for aleatoric uncertainty, the Gaussian compo-
nents need to overlap to express high aleatoric uncertainty
(uncertain labelling). At the same time, this necessarily pro-
vides looser density estimates. On the other hand, the GDA
density is much tighter, but this comes at the cost of NLL for
classification because it cannot express aleatoric uncertainty
that well. Figure 17 visualizes how the objectives trade-
off between each other, and why we use the softmax layer
trained for p(y |z) for classification and aleatoric uncertainty,
and GDA as density model for q(z).
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(b) Softmax entropy
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(c) Feature-space density

Figure 21. Disentangling aleatoric and epistemic uncertainty on Dirty-MNIST (iD) and Fashion-MNIST (OoD) (a) requires using softmax
entropy (b) and feature-space density (GMM) (c) with appropriate inductive biases (ResNet-18+SN vs LeNet & VGG-16 without them).
Enlarged version. (b): Softmax entropy captures aleatoric uncertainty for iD data (Dirty-MNIST), thereby separating unambiguous
MNIST samples and Ambiguous-MNIST samples. However, iD and OoD are confounded: softmax entropy has arbitrary values for
OoD, indistinguishable from iD. (c): With appropriate inductive biases (DDU with ResNet-18+SN), iD and OoD densities do not overlap,
capturing epistemic uncertainty. However, without appropriate inductive biases (LeNet & VGG-16), feature density suffers from feature
collapse: iD and OoD densities overlap. Generally, feature-space density confounds unambiguous and ambiguous iD samples as their
densities overlap. Note: Unambiguous MNIST samples and Ambiguous-MNIST samples are shown as stacked histograms with the total
fractions adding up to 1 for Dirty-MNIST.
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