
A. Additional Implementation Details
In this section, we describe the implementation de-

tails for the proposed PACL method. Particularly, in Ap-
pendix A.1, we describe the architecture of the vision em-
bedder used for training PACL, in Appendix A.2, we de-
scribe specifics of training including hyperparameters and
prompt engineering details. Finally, in Appendix A.3, we
describe details of image-text datasets used for training as
well as segmentation and image classification datasets used
for evaluation.

A.1. Vision Embedder Architecture

In Section 6.1, we have discussed that the proposed
PACL approach is flexible in the sense that PACL can be ap-
plied using pre-trained frozen encoders. Particularly, since
CLIP’s pre-trained vision encoders have desirable proper-
ties (see Semantic Coherence in Section 4), we use these
pre-trained encoders from CLIP to train PACL to transfer
to the task of zero-shot semantic segmentation. This sim-
plifies the training to just a small vision embedder on top
of the vision encoder. In this section and in Fig. 9, we
present the architecture of the Vision embedder. In partic-
ular, we use a single residual block with two linear layers
in the main branch and a single linear layer in the residual
branch. There is a ReLU non-linearity between the two lin-
ear layers in the main branch. The resulting model requires
training a mere 1.1M parameters whereas the architecture
has a total of 150M parameters for CLIP ViT-B/16. This
helps us in scaling up and training on a larger batch size for
our experiments as there is no gradient propagation through
the frozen image and text encoders.

A.2. Training details for Vision Embedder

In Appendix A.2.1, we describe the architecture of pre-
trained encoders as well as the hyperparameters used for
training the PACL models. In Appendix A.2.2, we pro-
vide some details on CLIP’s prompt engineering used to
derive best results from the text encoder of a pre-trained
CLIP model.

A.2.1 Architecture and Hyperparameters

As mentioned above, we only train PACL using a Vision
embedder on top of a pre-trained CLIP vision encoder. This
allows us the flexibility not only of using multiple pre-
trained vision encoders but also combinations of different
vision and text encoders. In Section 6.1, we show an ab-
lation with combinations of different pre-trained vision and
text encoders. In particular, we use: a) CLIP ViT-B/16 vi-
sion and text encoders, b) CLIP ViT-L/14 vision and text
encoders and b) DINO ViT-B/16 vision encoder with CLIP
ViT-B/16 text encoder. For each of these combinations, we
train a vision embedder as discussed in Appendix A.1 and

Figure 9. Vision embedder êv architecture for PACL. The
image encoder f̂v produces token/patch-wise representations
f̂v(x) ∈ RT,Dv of an input image x. The vision embedder êv
converts the patch-wise representations to the multi-modal shared
dimensional space, êv(f̂v(x)) ∈ RT,D where T is the number of
tokens or patches.

report zero-shot semantic segmentation results in Tab. 3 of
the main paper.

All our models are trained on a single node with 4
NVIDIA A100 GPUs with a GPU memory of 40GB in each
GPU. We use AdamW as the optimizer with beta values 0.9
and 0.98, an eps value of 1e − 6 and a weight decay of
0.2. We use an initial learning rate of 5e − 4 and reduce
the learning rate using a Cosine Annealing schedule where
the maximum number of iterations is set as the total num-
ber of iterations during training (i.e., number of epochs ×
number of iterations per epoch). We use a batch size of
4096 (1024 per GPU) and train the model for a total of 10
epochs on image-text data. We do not use any segmentation
annotations or class-agnostic segmentation masks during
training. We provide details on these image-text datasets in
Appendix A.3. When the training dataset is a combination
of GCC-3M, GCC-12M and YFCC-15M, the model takes
10 days to train on 4 NVIDIA A100 GPUs.

A.2.2 Prompt Engineering

Since we use CLIP’s [41] pre-trained text encoders, we fol-
low the prompt engineering guidelines following CLIP’s
OpenAI repository during inference time. In particular, dur-
ing inference, we compute the average embedding from
the text encoder using a set of 7 prompts: itap of
a ()., a bad photo of the ()., a origami
()., a photo of the large ()., a () in a
video game., art of the (), a photo of the
small (), where we put the name of the class within the
parenthesis (). We use the mean of the embeddings from
the the prompts for each class in order to compute cosine
similarity with the patch representations from the vision en-
coder. This is similar to the way CLIP performs zero-shot
image classification, however CLIP uses only the CLS to-
ken from the vision encoder to compute cosine similarity.

A.3. Training and Evaluation Datasets

Image-text datasets for training: We use primarily
3 different image-text datasets for training all our mod-
els. Firstly, we use Google Conceptual Captions (GCC)



3M, which contains approximately 3 million images, each
annotated with a caption. The images are scraped from
the web and the corresponding captions are obtained from
the Al-text HTML data associated with each image from
the web. Secondly, we use Google Conceptual Captions
(GCC) 12M, which is similar to GCC-3M but containing a
much larger corpus of image-text pairs with approximately
12 million samples. The primary purpose of GCC-12M is
for pre-training whereas GCC-3M is a relatively less noisy
dataset meant for fine-tuning pre-trained models. Thirdly,
we use YFCC-15M, a subset of 15 million samples from
the popular YFCC-100M [46] dataset, which is one of the
largest publicly available datasets containing image-text in-
formation obtained from Flickr. The subset of approxi-
mately 15 million images is defined by CLIP [41] by filter-
ing images from YFCC-100M with natural language titles
and/or descriptions in English.

Semantic segmentation datasets for zero-shot seg-
mentation: We use the following semantic segmenta-
tion datasets for zero-shot evaluation on the task of se-
mantic segmentation: a) Pascal VOC [16]: it has 20 fore-
ground classes and 1 background class with 1449 vali-
dation images. We measure performance only on fore-
ground classes and mask predictions with entropy above 1.5
as background, b) Pascal Context [36]: it has 59 classes
with 5k validation images of indoor and outdoor scenes,
c) COCO Stuff [4]: it has 172 classes categorised into ei-
ther “thing” classes or “stuff” classes and has 5k valida-
tion images, d) ADE20K [63]: the version we evaluate on
is widely used and has 150 classes with 2k validation im-
ages. For all datasets, we report the mean intersection over
union (mIoU), the most popular evaluation metric for se-
mantic segmentation.

Image classification datasets for zero-shot classifica-
tion: We evaluate PACL on a suite of 12 image classifica-
tion datasets which include ImageNet [14], 4 well-known
distribution shifts on ImageNet as well as 7 other popu-
lar image classification datasets. ImageNet is a very pop-
ular image classification dataset with 1000 classes relating
to concepts contained in the WordNet hierarchy. We use
50000 validation samples in ImageNet for evaluation. The
4 datasets considered to be popular distribution shifts on
ImageNet are: a) ImageNet-A [21] which contains natural
real-world images from 200 classes in ImageNet but which
are mostly mis-classified by well-known ResNet classifiers,
b) ImageNet-R [20] which contains cartoons, graphics and
other art renditions of images from 200 classes in ImageNet,
c) ImageNet-Sketch [48] which contains 50000 validation
images, 50 from each of the 1000 ImageNet classes con-
structed by making the Google search, ”sketch of ()” where
() is the ImageNet class concerned and d) ImageNet-V2 [42]
which has 10000 validation images obtained by following
the same collection procedure as ImageNet original images,

in order to make the distribution of ImageNet-V2 as simi-
lar as possible to ImageNet. The other 7 image classifica-
tion datasets include: a) CIFAR-10 [27] having 10000 test
images from 10 classes including different types of auto-
mobiles and animals, b) CIFAR-100 [27] having 10000 test
images from 100 classes instead of 10 obtained in a simi-
lar fashion as CIFAR-10, c) Stanford Cars [26] with 8041
test images containing cars of different makes and models,
d) Caltech-101 [30] having 101 categories of images with
40-800 images per class, e) Food-101 [2] containing 101
classes of food items organized by the type of food, with
approximately 25000 test images, f) Oxford-IIIT Pets [39],
a dataset with 37 categories of pets with approximately 200
images per class, and g) Flower dataset [37] having 102
different categories of flowers with between 40 and 258 im-
ages for each class.

B. Additional Results
B.1. Semantic Coherence in CLIP

Semantic coherence is a property of ViT based vision
encoders where semantically similar regions of the image
have similar patch/token level representations in the feature
space of the vision encoder. In Section 4 and Fig. 4, we have
shown both quantitative and qualitative results comparing
the semantic coherence of a CLIP and a DINO ViT-B/16
vision encoders. Particularly, we had seen that CLIP’s ViT-
B/16 vision encoder performs better than DINO. In Fig. 10,
we present additional qualitative examples to further cor-
roborate our observations in Section 4. We show qualitative
examples from the Bird, Plane and Sheep classes in Pascal
VOC and plot the patch level similarity between a selected
patch from the original image (marked using a yellow cross)
and all patches from the same image as well as a different
image. The similarity is shown using a heatmap where yel-
low and red shades indicate high similarity and blue shades
indicate low similarity. Our observations are similar to the
ones in Section 4, and we see that CLIP performs compet-
itively or better than DINO. While DINO seems to cover
semantically meaningful regions in the images, it doesn’t
cover the entirety of the relevant object. CLIP seems to be
doing a better job at covering all the patches for the object as
highly similar to the marked patch, thereby indicating better
semantic coherence.

B.2. Qualitative Segmentation Results

In Fig. 6, we showed qualitative results for the task of
zero-shot semantic segmentation on both Pascal VOC and
ADE20K datasets. In this section, we present more quali-
tative results on the same. Particularly, in Fig. 11, we show
additional qualitative results on 8 images from Pascal VOC
covering different concepts including bus, cat, dog, bird,
potted plant, bottle and plane. Similarly, in Fig. 12, we pro-



Datasets
Model Vision Encoder Image Classification ImageNet Shifts

ImageNet [14] C10 [27] C100 [27] Cars [26] Caltech101 [30] Food101 [2] Pets [39] Flowers102 [37] ImageNet-A [21] ImageNet-R [20] ImageNet-Sketch [48] ImageNet-V2 [42]

CLIP ViT-B/16 68.73 91.18 67.88 63.50 85.69 87.52 88.44 61.12 38.88 76.83 48.36 62.21
ViT-L/14 75.96 95.85 76.94 76.9 86.38 92.69 92.91 69.13 55.44 87.32 59.71 70.26

CLIP + PACL (Ours) ViT-B/16 73.61 92.3 69.11 60.7 84.8 89.12 90.1 62.3 42.10 78.1 50.14 65.4
ViT-L/14 78.2 95.13 74.43 74.2 86.25 93.2 93.05 69.7 59.13 85.6 63.23 72.88

Table 6. Zero-shot Image Classification on 12 different datasets. We compare PACL’s performance with vanilla CLIP for both ViT-B/16
and ViT-L/14 encoders. The first 8 datasets are standard image classification datasets: ImageNet, CIFAR-10, CIFAR-100, Stanford Cars,
Caltech101, Food101, OxfordIIITPets, and Flowers102. The remaining 4 datasets are standard distribution shifts on ImageNet: ImageNet-
A, ImageNet-R, ImageNet-Sketch and ImageNet-V2. PACL + CLIP broadly outperforms vanilla CLIP on most of the classification
datasets.

(a) (b) (c) (d) (e)

Figure 10. Additional qualitative results on semantic coherence
between CLIP and DINO ViT-B/16. a): we show the original
image of a class (bird in top row, aeroplane in middle row and
sheep in bottom row) with the patch marker (yellow X near the
centre). b, c): we show CLIP vision encoder cosine similarity
across all patches for the same and a different image of the same
class. d, e): we show the same for DINO.

Figure 11. Additional qualitative results on zero-shot seman-
tic segmentation on Pascal VOC. The first row shows the origi-
nal images, the second row shows the corresponding ground-truth
labels and the third row shows the predictions from our best per-
forming model, i.e., PACL trained using a pre-trained CLIP ViT-
B/16 encoder on GCC-3M + GCC-12M + YFCC-15M.

vide qualitative segmentation results from various indoor
and outdoor scenes from ADE20K. Similar to our obser-
vations in the main paper, we find that the zero-shot seg-
mentation results are decent and our models can recognise
a large variety of concepts without ever having been trained
on segmentation annotations or masks for any of them. This
shows the potential of using the scale of large image-text
datasets for zero-shot transfer to semantic segmentation.

B.3. Zero-shot Image Classification

In Fig. 8 of the main paper, we showed the difference in
zero-shot classification accuracies for PACL models trained
with CLIP backbones as compared to vanilla CLIP mod-
els on a suite of 12 image classification tasks including

Figure 12. Additional qualitative results on zero-shot semantic
segmentation on ADE-20K. The first row shows the original im-
ages, the second row shows the corresponding ground-truth labels
and the third row shows the predictions from our best performing
model, i.e., PACL trained using a pre-trained CLIP ViT-B/16 en-
coder on GCC-3M + GCC-12M + YFCC-15M.

ImageNet, 4 datasets considered to be distribution shifts
on ImageNet and 7 other well-known image classification
datasets. In this section, we provide the exact classification
accuracies for all the models on each of the datasets. We
present these results in Tab. 6. As mentioned in the main pa-
per, the PACL models outperform vanilla CLIP on 10 out of
12 datasets for the ViT-B/16 model and 7 out of 12 datasets
for the ViT-L/14 backbone, thereby broadly outperforming
CLIP on zero-shot image classification.

C. Future Work
In this section, we discuss possible avenues for future

research based on our work.
Exploring PACL for image-level applications: As

seen above, since PACL is a general compatibility func-
tion for contrastive loss, it can be applied to all image level
tasks. We show this through zero-shot image classification.
However, it would be interesting to further explore PACL
as an independent contrastive learning method. In partic-
ular, training models from scratch on PACL instead of the
standard CLIP loss might provide additional benefits in the
context of general VLP tasks like image-text retrieval [50].
Since our work is focused around zero-shot semantic seg-
mentation, we keep this exploration out of the scope of this
work and as potential avenue for future research.

Exploring other ways to generate patch level align-
ment: All the current methods on zero-shot open vocab-
ulary segmentation, including ours, use CLIP like models,
i.e., models with individual vision and text encoders with
a fusion of modalities at the end of the encoders. How-



ever, there could be other ways of fusing modalities which
could also lead to a generation of patch level alignment be-
tween image and text. In particular, one of the seemingly
likely candidates of multi-modal fusion for generating patch
level alignment could be cross-attention between image and
text tokens, often seen in architectures used in VLP train-
ing [25, 31, 45] etc. Studying the patch level alignment in
these models to see if they can be transferred to dense pre-
diction tasks is also an interesting area of future exploration.
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