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Appendix
In this supplementary document, we discuss additional

details about our method, the data used for training and
evaluation, and show further qualitative results. We also
refer to our for a comprehensive overview with further qual-
itative results.

A. Additional qualitative results
We provide additional qualitative results on PhotoShape

Chairs [6] in Fig. 1 as well as on ABO Tables [3] in Fig. 2.
Furthermore, we provide a qualitative comparison of our
method when removing the rendering loss in Fig. 3 and
Fig. 4.

B. Implementation detail
Architecture We base our architecture on 2D U-Net
structure from [4]: For this, we replace the 2D convolu-
tions in the ResNet and attention blocks with corresponding
3D convolutions, preserving kernel sizes and strides. Fur-
thermore, we use 3D average pooling layers instead of 2D
in the downsampling steps. Our U-Net consists of 4 scaling
blocks with two ResNet blocks per scale, where we linearly
increase the initial feature channel dimension of 64 to 256.
We use skip attention blocks at the scaling factors 2, 4, and
8 with 32 channels per head.

Training details We train all models with a batch size of
8 and use the Adam optimizer with an initial learning of
10−4. We apply a linear beta scheduling from 0.0015 to
0.05 at 1000 timesteps. From 4 random training views at a
resolution of 128× 128, we sample 8192 random pixels for
the rendering supervision (with 92 z-steps for volumetric
rendering) and weight the rendering loss with ωt = ᾱ2

t . We
train for 3.0m iterations with a decaying LR scheduling for
10−4 to 10−6 at a voxel grid resolution of 32 on 2 GPUs on
every data set.

Sampling time We perform DDPM sampling for 1000 it-
erations leading to a run time of 48.6s per sample on an

NVIDIA RTX 2080 TI. Once synthesized, our explicit rep-
resentation enables rendering at 128 × 128 resolution with
over 380 FPS.

C. Data
Radiance Field Generation For PhotoShape Chairs, we
render the provided 15,576 chairs using Blender Cycles
from 200 views on an Archimedean spiral at a fixed ra-
dius of 2.5 units with pitch starting from −20◦ to 60◦. For
ABO Tables, we use the provided 91 renderings with 2-
3 different environment map settings per object, resulting
in 1676 tables. For PhotoShape Chairs, we hold out 10%
of the samples for testing based on shape ids selected ran-
domly, whereas for ABO Tables, we use the official data
split. We fit explicit voxel grids at a resolution of 323 using
volumetric rendering with spherical harmonics of degree 2
for an initial fit. We then fine-tune our representations for
spherical harmonics of degree 0, which we found to lead to
sharper geometry compared to directly optimizing density
and color features. We furthermore bound the feature space
to [−1, 1] which we found to stabilize the sampling process
noticeably affecting the rendering quality.

Evaluation For image quality evaluation, we calculate
FID and IS by sampling 10k views by rendering 1000 sam-
ples from 10 random views at a resolution of 128 × 128.
We follow [10] and evaluate the geometric quality by com-
puting the Coverage Score (COV) and Minimum Matching
Distance (MMD) using Chamfer Distance (CD)

CD(X,Y ) =
∑
x∈X

min
y∈Y
||x− y||22 +

∑
y∈Y

min
x∈X
||x− y||22,

COV(Sg, Sr) =
|{arg minY ∈Sr

CD(X,Y )|X ∈ Sg}|
|Sr|

,

MMD(Sg, Sr) =
1

|Sr|
∑
Y ∈Sr

min
X∈Sg

CD(X,Y ),

on a reference set Sr (the test samples) and a generated set
Sg twice as large as the reference set. We extract meshes us-
ing marching cubes [5] and sample 2048 points on the faces.
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Figure 1. Additional qualitative sampling results on PhotoShape Chairs [6].

To account for potentially different scaling of the samples
produced by the 3D-aware GAN models, we normalize all
point clouds by centering in the origin and an-isotropic scal-
ing of the extent to [−1, 1].

For evaluation of the masked radiance field completion,
we additionally compute a masked peak signal-to-noise ra-
tio (mPSNR): Given a binary mask m of the input radi-

ance field f in, we compute for each corresponding input
image the non-masked area by depth-based projection into
the image plane using depth estimated from the input radi-
ance field. We then compute the mPSNR by averaging the
PSNR on the non-masked pixels for all evaluation views
(we choose 10 views randomly).



Figure 2. Additional qualitative sampling results on ABO Tables [3].

D. Conditional sampling

Masked completion Since the generator of EG3D [1]
is trained via 2D discriminator guidance, we perform 3D
masked completion via GAN inversion. For this, we start
from a random initial latent code and repeat the following
steps for 200 iterations on each masked sample: We render
the current synthesized sample from 8 views and project the
3D input mask onto the synthesized views using the pre-
dicted depths. On the remaining non-masked regions, we
compute the photometric error with the input images. We
use the Adam optimizer with a learning rate of 10−2 with
a small L2 regularization term on the code (weighted with

5× 10−2) in order to update the latent code.

Image-to-Volume Synthesis Given a posed and seg-
mented image, we condition our trained radiance field dif-
fusion model by steering the sampling processing similar to
the Classifier Guidance formulation from [4]: During sam-
pling time, for each time step t, we gradually update the
predicted denoised field f̃ t

0 towards minimizing the photo-
metric error obtained from comparing the rendering Ĩt from
a given pose with the foreground-masked target image I .
For this, we compute the gradient ∇f̃t

0
(Ĩt, I) on the current

denoising estimate by volumetric rendering and steer the
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Figure 3. Qualitative comparison on PhotoShape Chairs [6] when removing the 2D rendering loss.

sampling process by f̃ t
0 ← f̃ t

0 − λ∇f̃t
0
(Ĩt, I) with a small

guidance weight λ.

E. CLIP conditioning

Following related work [2, 9, 11], we additionally aug-
ment our model to condition on embeddings derived from

text or single-image encodings obtained from CLIP ViT-
B/32 [7] using cross-attention layers. For training, we
use random single training views encoded by the frozen
CLIP model to condition the denoiser. Here, we adapt
the cross-attention mechanism from [4] for the 3D U-Net
and do not train the image encoder in order to preserve the
image-text-correspondence of CLIP. We show examples on
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Figure 4. Qualitative comparison on ABO Tables [3] when removing the 2D rendering loss.

single-image PhotoShape samples in Fig. 7 as well as on
real-world image from the Pix3D dataset [8] in Fig. 6.

As these codes have strong correspondences to text sam-
ples by design, we can guide the sampling process by text
prompts, examples are shown in Fig. 5 without the need for
training on text-radiance field pairs.
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Figure 5. Text-conditional inference using CLIP-embeddings trained on PhotoShape Chairs [6].
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Figure 6. Image-conditional inference using CLIP-embeddings on Pix3D [8] images.
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Figure 7. Image-conditional inference using single-view CLIP-embeddings on PhotoShape Chairs [6].
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