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1. Overview
In this supplementary material, we provide the following

items:

A.1 Further implementation details.
A.2 Additional experimental results.
A.3 More qualitative results.
A.4 Architecture Irrelevant: BPC with One-stage.
A.5 Formulation for Semantic Segmentation.
A.6 Error bars: Mean & Std. Dev.
A.7 More results on Common Corruptions.

A.1 Further Implementation Details

We choose Deformable-DETR (D-DETR) for our exper-
iments. Our BPC loss is an auxiliary loss that jointly trains
with the object detection losses to achieve better calibration.
For our experiments, we use multi-gpu settings (4 GPUs)
for training.

We provide further details on experimental settings for
PascalVOC to watercolor1k, clipart1k, and comic1k do-
main shifts. We utilize train set of PascalVOC 2007 and
2012 for training and validation set of PascalVOC 2012 is
used for evaluation purpose. For post-hoc method, it needs
a hold-out validation set, and PascalVOC 2007 test set is
used for that purpose. PascalVOC contains 20 categories
of real images. Other out-domain datasets contain evalua-
tion images, and respective 1k test set images are used for
watercolor1k and comic1k, while whole 1k images of cli-
part1k are used for evaluation. Clipart1k also contains 20
categories, whereas 6 common categories are evaluated in
watercolor1k and comic1k. We report calibration error (D-
ECE) and mean average precision for reporting results.

A.2 Additional Experimental Results

PascalVOC: We compare the performance of our cali-
bration loss with recent calibration methods, post-hoc cal-
ibration method, and the baseline on PASCALVOC to wa-
tercolor1k, clipart1k, and comic1k domain shifts. In Tab. 1,

`````````̀Methods
Scenario In-Domain (PascalVOC)

D-ECE ↓ AP box mAP@0.5
Baseline [6] 11.8 49.7 73.8
TS (post-hoc) [1] 13.0 49.7 73.8
MDCA [2] 12.8 48.9 73.2
MbLS [4] 20.9 49.7 73.6
BPC (Ours) 11.2 49.6 74.0

Table 1. Calibration results with baseline, train-time losses and
post-hoc methods are reported. BPC shows improvement in de-
tection calibration for in-domain scenario. AP box and mAP@0.5
are also reported.

we present the results on PascalVOC, and our BPC loss re-
duces the D-ECE by 9.7%↓ over MbLS [4] and 1.6%↓ over
MDCA [4].

Watercolor1k: In Tab. 2, our BPC loss improves the cali-
bration performance without losing significant detection ac-
curacy. Our loss shows calibration improvement of 7.0%↓
over MbLS [4] and 10.0%↓ over post-hoc method.

Clipart1k: Tab. 2 shows that our BPC loss comparatively
improves the calibration performance without losing detec-
tion accuracy. Our loss shows calibration improvement of
1.5%↓ over MbLS [4] and 8.4%↓ over post-hoc method.

Comic1k: Our BPC loss improves the calibration perfor-
mance along with the detection accuracy. In Tab. 2, our loss
shows calibration improvement of 5.6%↓ over MbLS [4]
and 3.2%↓ over MDCA [2].

A.3 More Qualitative Results

We show more qualitative calibration results on Cor-
COCO (corrupted version of MS-COCO 2017 validation
set) in Figs. 1 and 2. Detector trained with our loss forces
the accurate predictions to be more confident whereas inac-
curate predictions to be less confident.
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`````````̀Methods
Scenarios Out-Domain (watercolor1k) Out-Domain (clipart1k) Out-Domain (comic1k)

D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5 D-ECE ↓ AP box mAP@0.5
Baseline [6] 11.1 15.9 31.8 11.0 9.0 17.9 14.4 5.6 11.1
TS (post-hoc) [1] 19.3 15.9 31.8 19.2 9.0 17.9 22.0 5.6 11.1
MDCA [2] 9.8 17.5 34.8 10.5 9.3 17.8 15.3 4.9 8.8
MbLS [4] 16.3 16.8 34.5 12.3 9.2 17.9 17.7 5.5 10.4
BPC (Ours) 9.3 16.5 34.1 10.8 10.2 19.1 12.1 6.1 11.7

Table 2. Comparison of calibration performance with the baseline, train-time losses and post-hoc methods. Our BPC shows improvement
over almost all competing approaches in three challenging out-domain scenarios i.e. from PASCALVOC to watercolor1k, clipart1k &
comic1k. AP box and mAP@0.5 are also reported for each scenario.
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Figure 1. Baseline [6] vs. BPC (Ours): Qualitative results on CorCOCO dataset (Out-Domain of MS-COCO). Detector trained with our
loss forces the accurate predictions to be more confident whereas inaccurate predictions to be less confident. Detection threshold is set
to 0.3. Green boxes are accurate predictions with their respective confidence scores. Red (dashed) boxes are inaccurate predictions with
corresponding scores. Blue shows the ground truth boxes for corresponding detections.
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Figure 2. Baseline [6] vs. BPC (Ours): Qualitative results on CorCOCO dataset (Out-Domain of MS-COCO). Detector trained with our
loss forces the accurate predictions to be more confident whereas inaccurate predictions to be less confident. Detection threshold is set
to 0.3. Green boxes are accurate predictions with their respective confidence scores. Red (dashed) boxes are inaccurate predictions with
corresponding scores. Blue shows the ground truth boxes for corresponding detections.

Method In-Domain (COCO) Out-Domain (CorCOCO)
D-ECE ↓ AP box mAP D-ECE ↓ AP box mAP

One-stage (FCOS) 22.0 38.7 57.2 24.7 20.4 32.1
BPC (Ours) 20.9 38.4 56.9 23.5 20.3 32.0

Table 3. Calibration results on One-Stage object detector (FCOS).

A.4 Architecture Irrelevant: BPC with One-stage

In Tab. 3, we show results with a one-stage detector
(FCOS [5] with ResNet-50). Our BPC loss improves cal-
ibration in both in-domain (COCO) and out-domain (Cor-
COCO).

A.5 Formulation for Semantic Segmentation

Our loss BPC is extensible for semantic segmentation.
We provide a sketch formulation to extend BPC loss for se-
mantic segmentation (Fig. 3).

Predicted MaskGT Mask

Figure 3. BPC loss for Semantic Segmentation task. 3 classes as box
colors (green, red & grey). Black text in box (confident) and yellow (not-
confident) predictions.

A.6 Error bars: Mean & Std. Deviation

Fig. 4(b) plots the mean and std.dev D-ECE for BPC and
baseline in CS (in-domain) and Foggy-CS (out-domain).
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Figure 4. (a) Calibration performance on COCO corruptions. (b) Error bars on CS/Foggy-CS dataset.
.

A.7 More results on Common Corruptions

We corrupt COCO evaluation set (val2017) after sam-
pling 5 different corruptions with a fixed severity level of
2 from Common Corruptions [3]. Fig. 4(a) shows that our
BPC loss can improve the calibration performance on all
five corruptions.
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