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The supplementary material provides more details, results,
and visualizations to support the main paper. In summary, we
include additional implementation details, more experiments
and ablation studies, analysis of our results, more qualitative
visualizations, and a discussion on future works.

1. Additional Implementation Details
Predicate Class Distribution. We define the HEAD, BODY
and TAIL relationship classes in Action Genome (Action
Genome) [3] as shown below,

• HEAD ≥100000 training samples

• 8000 training samples ≤ BODY < 100000 training
samples

• TAIL <8000 training samples

Experimental Setup. The architecture of the PEG is kept the
same as [1]. The Faster-RCNN object detector [7] is first trained
on Action Genome [3] following [1, 5, 10]. Following prior
work per-class non-maximal suppression at 0.4 IoU is applied to
reduce region proposals provided by the Faster-RCNN’s RPN.
The sequence encoder in the OSPU is designed with 3 layers,
each having 8 heads for its multi-head attention. The dimension
of its FFN projection is 1024. During training, we reduce the
initial learning rate by a factor of 0.5 whenever the performance
plateaus. All codes are run on a single NVIDIA RTX-3090.

Evaluation Metrics. We follow the official implementation
of [8] for the mean-Recall@K (mR@K) metric. Different
from the standard Recall@K (R@K), mR@K is computed
by first obtaining the recall values of each predicate class
and then averaging them over the total number of predicates.
Therefore if an SGG model consistently fails to detect any
of the visual relationships i.e., predicates, the mR@K value
will drop considerably. This makes it a much more balanced
metric compared to R@K, which is obtained by averaging
recall values over the entire dataset. Therefore improvement
on the high-frequent classes alone is sufficient for high R@K

Table I. Importance of uncertainty attenuation and memory guided
meta-debiasing for PREDCLS.

With Constraint No ConstraintsUncertainty
Attenuation

Memory guided
Debiasing mR@10 mR@20 mR@10 mR@20

- - 37.8 40.1 51.4 67.7

✓ - 40.2 44.0 55.1 77.3
- ✓ 41.1 44.8 57.0 82.9
✓ ✓ 42.9 46.3 61.5 85.1

Table II. Impact of Lintra.

With Constraint No Constraints

Lintra SGCls SGDet SGCls SGDet

mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20

- 32.1 33.2 17.9 22.1 46.5 60.4 23.5 32.8
✓ 34.0 35.2 18.5 22.6 48.3 61.1 24.7 33.9

values. For all experiments, the reported results are in terms of
image-based R@K and mR@K. Since the video-based R@K
is a simple averaging of the per-frame measurements, most
existing works adopt the image-based metrics [1,4,5,10].

Baseline Performance. For the baselines STTran [1],
TRACE [9], and RelDN [11], we used their official code
implementation to obtain the respective mR@K values. We
obtained the mR@K values of STTran-TPI [10] from email
discussions. The performance of HCRD supervised [2],
and ISGG [4] are taken from the reported values in [4]. As
explained in Section 4.1 of the main paper, SGG performance is
typically evaluated under two different setups With Constraint
and/or No Constraints. All the baselines we compare with
either follow the With Constraint [2, 4, 10] setup or the No
Constraints setup [9] or both [1,5].

2. Additional Comparative Results
Comparison of HEAD, BODY and TAIL class performance,
with SOTA, under No Constraints. Comparative perfor-
mance on the HEAD, TAIL and BODY classes of Action
Genome under the No Constraints setup are shown in Fig I.
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Figure I. Comparison of mR@10 for the HEAD, BODY and TAIL classes in Action Genome [3] under the ”No constraints” setup.
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Figure II. Comparison of mR@10 for the HEAD, BODY, and TAIL
classes in Action Genome [3] for different ablation setups of Table
4. Performances reported under the ”with constraint” setup.

Similar to the With Constraint results shown in Fig 7 of the
main paper, TEMPURA outperforms both TRACE [9] and
STTran [1] in improving performance on the TAIL and BODY
classes without significantly compromising performance on
the HEAD classes. While TRACE performs well under the No
Constraints setup, its performance under the With Constraints
setup is lacking (Fig 7 main paper). TEMPURA, on the other
hand, shows consistent performance for both setups, beating
TRACE and STTran in generating more unbiased scene graphs.

3. Additional Ablations

Ablations for PREDCLS task. The impact of memory
guided debiasing and uncertainty attenuation for the PREDCLS
task can be seen in Table I. Similar to the other SGG tasks
(Table 4 of the main paper), incorporating both principles gives
the best results. Since, for PREDCLS, the object bounding
boxes and classes are already provided, the OSPU is inactive
for this SGG task.

Comparison of HEAD, BODY and TAIL class perforamnce
for SGCLS and SGDET ablations. From Fig II and Fig III,
we can observe that using the full model (OSPU+MDU+GMM)
gives the best performance for the BODY and TAIL classes for
both SGCLS and SGDET tasks.

Impact of Lintra. The impact of Lintra can ascertained
from Table II. The results show that utilizing the intra-video
contrastive loss Lintra boosts the sequence processing
capability of the OSPU, leading to more consistent object
classification and, consequently, more unbiased scene graphs.
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Figure III. Comparison of mR@10 for the HEAD, BODY, and TAIL
classes in Action Genome [3] for different ablation setups of Table
4. Performances reported under the ”no constraints” setup.

Table III. Comparitive performance of TEMPURA for three different
settings of λ. No λ corresponds to when the weighted residual
operation of Eq 11 is replaced with a standard residual connection.
The optimal values of λ are 0.5, 0.3, and 0.5 for PREDCLS, SGCLS,
and SGDET, respectively.

λSetting
PredCLS SGCls SGDET

mR@10 mR@20 mR@10 mR@20 mR@10 mR@20

λ=0 31.7 36.9 25.0 26.2 13.4 17.9
No λ 39.4 43.1 30.8 32.2 17.3 21.6

Optimal λ 42.9 46.3 34.0 35.2 18.5 22.6

Ablations on λ. The gradient scaling factor λ regulates
the influence of the direct PEG embedding rjtem of the jth

subject-object pair and the compensatory information of the
diffused memory feature rjmem as shown in Eq 11 in the main
paper. λ∈ (0,1] i.e. 0<λ≤ 1. To obtain the optimal value
of λ, we vary it within [0.1,0.3,0.5,0.7,0.9] and observe the
corresponding With Constraint R@10 and mR@10 values as
shown in Fig IV. As observed in Fig IV, increasing the value
of λ causes the R@10 values to also increase before stagnating
after a certain point. However, the corresponding mR@10
values start falling for higher λ values. Since the Recall@K
metric is an indicator of how well an SGG model is performing
on the data-rich predicates, this indicates that for higher λ
values, the compensatory effect of rjtem is drastically reduced,
and the PEG fails to generate more unbiased representations.
On the other hand, if λ is set to small values like 0.1, high
mR@10 values can be observed, but this comes at the expense
of R@10 performance, indicating a drop in performance of the
HEAD classes due to excessive knowledge being transferred
from these data-rich classes to the data-poor ones. Since the
goal of unbiased SGG is not to perform well on the data-poor
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Figure IV. Comparison of R@10 and mR@10 performance of TEMPURA for different values of λ.
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Figure V. Comparison of mR@10 for the HEAD, BODY and TAIL classes in Action Genome [3] for different λ values.
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Figure VI. Top to Bottom: Predictive uncertainty for PREDCLS (a,b),
Predictive Uncertainty for SGCLS (c,d) and Predictive Uncertainty
for SGDET (e,f).

classes at the expense of data-rich classes, it is necessary to set
λ to an optimal value that gives the best balance between recall
and mean-recall performance. As shown in Fig IV the optimal λ
is 0.5 for PREDCLS and SGDET, and 0.3 for SGCLS. From Fig

V we can observe that setting λ to the optimal values gives the
best balance in performance over the HEAD, BODY and TAIL
classes as opposed to setting λ to very low and very high values.

If λ=1, there is no impact of rjmem, and the model relies
solely on the uncertainty attenuation of the GMM head. As
explained in section 3.5 of the main paper, rjmem essentially
hallucinates information relevant to the data-poor classes other-
wise missing from the original PEG embedding rjtem and the
weighted residual operation of Eq 11 acts as a mechanism to
diffuse this compensatory information back to rjtem in order to
make it more balanced. Therefore, λ can never be 0; otherwise,
there will be no PEG embedding to debias, and the MDU will
never be able to teach the framework how to generate more unbi-
ased embeddings. On the other hand, if λ is not used in the diffu-
sion operation of Eq 11 i.e., if a standard non-weighted residual
operation is used, the biased information from rjtem tends to
overpower the effect of rjmem. To verify this, we set up two ex-
periments. In the first case, we set λ=0 and train the model, and
in the second case, we replace the weighted residual operation of
Eq 11 with a simple residual operation i.e. r̂jtem=rjtem+rjmem

and then train the model. It can be observed from the With Con-
straint results shown in Table III that settingλ to 0 results in a sig-
nificant drop in mR@K performance since the MDU is unable to
diffuse the compensatory information back to the original PEG
embedding rendering it ineffective in regularizing the model
towards generating more unbiased predicate embeddings. Ad-
ditionally, by comparing rows 2 and 3 in Table III, we can infer
that utilization of λ for the weighted residual operation of Eq 11
is necessary to get the best performance in terms of mean-recall.



Table IV. Comparison of performance when the memory bank ΩR and MDU is used and not used during inference. In both cases, the same model
is used during inference which has been trained using the MDU. The results in the first row correspond to when MDU acts as a network module,
and those in the second row correspond to when MDU is used as a meta-regularization unit which is its intended purpose. It can be observed
from the results that incorporating the training memory bank ΩR for the test videos can bias the relationship representations towards the training
distribution, defeating the purpose of the MDU.

With Constraint No Constraints

MDU used
during Inference PredCLS SGCls SGDet PredCLS SGCls SGDet

mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20 mR@10 mR@20

✓ 38.5 42.0 29.9 31.2 16.1 20.4 53.6 80.0 42.5 57.5 19.4 29.6
- 42.9 46.3 34.0 35.2 18.5 22.6 61.5 85.1 48.3 61.1 24.7 33.9

Figure VII. Comparative qualitative results. From left to right: input video frames, ground truth scene graphs, scene graphs generated by TEM-
PURA and the scene graphs generated by the baseline STTran. Incorrect object and predicate predictions are shown in green and pink, respectively.

4. Additional Analysis

Are the effects of high uncertainty being attenuated? The
predicate classification loss, Lp (Eq 16) is designed to penalize
the model if it predicts high uncertainty for any sample. This
means the model progressively becomes more efficient in attenu-
ating the effect of noisy samples, which inherently decreases its
predictive uncertainty with the number of epochs. This can be
visualized in Fig VI, which shows the total predictive uncertainty
of the full model for each SGG task. Both the epoch-specific
aleatoric and epistemic uncertainties are obtained by averaging
across all samples (subject-object pairs) over all classes.

Role of Memory Diffusion Unit. As explained in section 3.5,
the MDU and the predicate class-centric memory bank ΩR are
used during the training phase as a structural meta-regularizer to
debias the direct PEG embeddings and inherently teach the PEG
how to learn more unbiased predicate embeddings. One might
ask why the MDU and the training memory bank ΩR cannot
be used as a network module to forward pass through during
the inference like many memory-based works on long tail

image recognition [6,12]. This is because of the distributional
shift between training and testing sets in the video SGG dataset.
Such distributional shift also exist in standard image recognition
datasets but is very minimal. That is not the case for video SGG
data. For instance, unlike an image recognition dataset each sam-
ple of a visual relationship is not i.i.d. The visual relationship
between a subject-object pair at each frame depends on the vi-
sual relationships (between the same pair) in the previous frames,
and this temporal evolution is captured by TempDec based
on the motion information coming from the proposal features,
shifting bounding boxes and union features of the subject-object
pair. The temporal evolution of many visual relationships in the
test videos can differ greatly from those in the training videos.
This spatio-temporal information of each predicate class, in the
entire training set, is compressed into their respective memory
prototypes ωp ∈ ΩR. Therefore utilizing these predicate
memory prototypes (for the MDU operation) during inference
biases the framework towards the training distribution which is
antithetical to the purpose of the MDU. Additionally, the issue
of triplet variability, shown in Fig 2 of the main paper, can fur-
ther deepen the distribution shift since certain triplets associated



with a relationship class can occur only during inference. For
example, the triplets <person−above−refrigerator> and
<person− lying on−bag > associated with the above and
lying on predicates occur in only the test set videos of Action
Genome [3]. The information associated with these unique
triplets is never incorporated in ΩR, consequently impacting
the predicate embedding if ΩR is used during inference which
can lead to a drop in performance. We verify this by conducting
a short experiment the results of which are shown in Table IV.

More Qualitative Results. Some more qualitative results
are shown in Fig VII. It can be seen that TEMPURA prevents
fewer false positives compared to the baseline STTran [1].

5. Limitations and Future Work
The progressive computation of the memory bank as a set of

prototypical centroids does increase the training time, but as we
showed in our results, this memory-guided training approach
can result in more unbiased predicate representations that inher-
ently help in the generation of more unbiased scene graphs. In
future works, we aim to explore a parallel memory computation
approach that can perform at par with our current method.
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