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Abstract

The following text is supplementary text for the paper ”3D-POP - An automated annotation
approach to facilitate markerless 2D-3D tracking of freely moving birds with marker-based
motion capture”. The text includes details of methods and results that are not part of the
main text which are described in more detail here. We also outline detailed method that can
be helpful to replicate the setup and annotation process, especially for biologists.

1 Affiliations

Here, we provide complete affiliations for the authors from the main text, with identical numbering.
1. Department of Collective Behaviour and Department of Ecology of Animal Societies, Max

Planck Institute of Animal Behavior, 78464 Konstanz, Germany.
2. Department of Biology, University of Konstanz, 78464 Konstanz, Germany.
3. Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464

Konstanz, Germany.
4. Computer Aided Medial Procedures, Informatik Department, Technische Universität München,

Boltzmannstraße 3, 85748, Garching bei München, Germany.
5. Department of Biological Physics, Eötvös Loránd University, Pázmány Péter sétány 1A,

Budapest 1117, Hungary.
6. MTA-ELTE ‘Lendület’ Collective Behaviour Research Group, Hungarian Academy of Sci-

ences, Budapest 1117, Hungary.

2 Supplementary Methods

2.1 Camera Calibration:

The Infrared cameras of the vicon motion capture system (Vicon Vero,Vantage) are calibrated using
built in software (Vicon Nexus) with a calibration wand. All cameras are also time synchronized
when recording. The calibration of the Vicon system forms the basis of the whole dataset, in which
we use the vicon coordinate system for all 3D coordinates.

For the 4 high definition RGB action cameras, we performed intrinsic calibration, extrinsic
calibration and time synchronization independently.
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2.1.1 Intrinsic and Extrinsic Calibration

For intrinsic calibration, we used an A0 (84.1 x 118.9 cm) charuco checkerboard before each day
of recordings and undistorted all videos from each camera view using the obtained distortion and
camera matrix from opencv.

For extrinsic calibration, we adopted a subject based approach, where we manually annotated
the 2D position of a motion capture markers visible in the image (e.g., backpack marker) on a
moving pigeon subject over up to 30 frames. For each frame, we compute camera pose using 2D
marker positions on the backpack and the 3D coordinates of the backpack in the vicon coordinate
system. The combination of both provide us the extrinsic parameters for each camera. We ensure
that sampled 3D positions are well distributed in the tracking volume to avoid bias in extrinsic
parameters. This approach is useful as it allows us to move the tripod positions between sessions
and perform fast extrinsic calibration without using the checkerboard.

In the future, we plan to make the method for marker selection automatic, which would improve
accuracy as the system will recompute extrinsics in real-time and change in camera position would
not require calibration.

2.2 Temporal synchronization

To synchronize the RGB action cameras, we attached a camera control box (Sony CBB-WD1) to
each action camera. The control boxes has built-in functionality to synchronize video streams from
multiple cameras over ethernet and a network switch.

Since our data are collected by two independent systems (Motion tracking system and RGB
cameras), we designed an arduino based synchronization device with 3 RGB LED lights and 2
infra-red lights that blinks for 1 second at 5 second intervals. For the RGB videos, we computed
the change in maximum pixel values of the cropped box area through time, and detected light flashes
based on a change of more than 30 units. For the vicon system, we attached 4 additional markers
onto the arduino box, which allow a new object to be defined within the mo-cap software together
with the 2 infra-red lights. Flashes can then be detected based on the number of markers present
in the object (6 markers for flash on, 4 markers for flash off). The systems are then temporally
synchronized by matching the detected light flashes from both systems. In cases where a light flash
were not detected, we manually filled in the flash by assuming the flash is exactly 6 seconds after
the previous one.

2.3 Markerless Data

POP-3D dataset contains ground truth annotation for pigeons with markers attached to their
body. However, we expect this dataset to play a role in development of markeless algorithms
for tracking pigeons and other birds. In experiment 2, we show that models trained on 3D-POP
dataset do work well with pigeons recorded in the same arena without any markers. To validate
results in future methods, 3D-POP dataset also includes trials of freely moving birds without any
marker attachment (n = 1,2,5,11). The videos will serve useful for making qualitative claim about
performance of algorithms developed with mocap annotated posture or identity data. It is worth
noting that we only demonstrate that position of markers do not play role in prediction of keypoints
but do not show same validation for problem of identity recognition. Markers may play a role in
identity recognition, we would like to test it in future work. Please see Table S1 for more details of
sessions recorded with pigeons without markers.
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No. individ-
uals

Available
frames

Video length
(min)

1 36,825 20
2 36,600 20
5 9,810 5.5
11 36,225 20

Table S1: Markerless Data Summary: Total number of frames and video length for markerless data.

2.4 Post-processing Mo-cap data

The data obtained from motion capture is often not directly usable for the annotation pipeline. It
requires a post-processing step to ensure smooth annotation process. Marker-based motion capture
has a limitations related to tracking loss and marker identification (for 6-DOF tracking). This results
in error of identification of pigeons and 6-DOF pose of rigid bodies defined by the mo-cap system.
The problem stems from limited availability of space on the pigeon body. The markers are forced
to be close to each other (in 4-marker pattern) which leads to error in correspondence matching
required for pose computation. To solve for these changes, we applied a post-processing pipeline
introduced by Kano et al.[1] to fix mis-labelled frames by detecting large changes in the distance
between defined markers, then determining the correct labels through permutation techniques.
Detailed description and code used is provided in Kano et al.[1].

2.5 Computing Pose Variation:

Computing variation in pose is important to understand how many different postures are recorded
in the dataset. Definition of coordinate system defined for each pigeon’s body part (head, body)
is slightly different because the definition is based on marker positions, which is different for each
pigeon each day. Therefore, the orientation angles defined by the 6-DOF pose w.r.t the canonical
frame (world coordinate system) are different for each pigeon even if absolute posture of pigeons is
the same. This problem does not allow us to compute variation of pose for each pigeon in a standard
manner. We argue that pigeon posture can be measured in a standard way if orientation of the
body parts are defined using positions of 3D keypoints in a unified coordinate system i.e., world
coordinate system. The keypoints such as beak, eyes or shoulders are common features recorded
for each bird and thus a posture representation involving these features would provide means for
comparing postures of different pigeons. Using this logic we designed a new technique to measure
3D orientation (rotational angles) of pigeon body parts relative to each axis. Please refer Figure
S1 for a pictorial representation.

In this text, we will describe the steps to obtain rotation angles of the head in the world coor-
dinate system. Firstly, we select beak as primary keypoint and shift the origin of world coordinate
system to this point (translation). This is done because we are interested in comparing rotation
units and shifting origin reduces complexity of pose representation from 6-DOF (rotation and trans-
lation) to 3-DOF (rotation). In other words, we change the representation of a rigid body (pigeon
head) from 6-DOF pose representation to a plane representation (passing through origin). The
plane is defined using 3D positions of beak, left eye and right eye (Figure S1). The normal of the
plane is the cross product of two vectors originating from beak to left and right eye. This normal
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Figure S1: Schematic for computing 3D orientation angles of the pigeon’s body parts (head and
body) for a given frame. A) Obtain 3D coordinates of keypoints in the world coordinate system
(vicon). B) Translate all keypoints to new origin (beak) and compute vectors towards the origin
using keypoints. C) Define a plane and compute surface normal. D) Calculate angle between surface
normals and the 3 primary axes.

is defined at the origin and it’s angles with respect to the primary x-y-z axis, which represent one
unique head orientation in the world coordinate system. This process is repeated to compute head
posture of all pigeons in all sequences. The comparison between all posture is only possible because
the world coordinate system is consistent for all sequences. Finally, we show a histogram of the
occurrences of the different rotation angles to indicate pose variation (Figure S2). The same process
is repeated for body pose by defining a plane using shoulder and tail keypoints, with tail as origin.

2.6 Dataset comparison

There are many datasets available with animals that target one or more problems. We provide
a short overview 18 different datasets and provide a table at the end of this text as auxiliary
information.

3 Experimental results

3.1 Outlier Detection and Filtering Pipeline

Our outlier detection and filtering pipeline introduces gaps in the dataset. Here is a quantification
of the number and length of gaps that are present in the dataset. (Table S2)
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Figure S2: Frame distribution of the head and backpack rotation angles with respect to the 3
primary axes of pigeon subjects present in the dataset. A) Distribution of head rotation angles. B)
distribution of backpack rotation angles.

1 frame 2-30 frames >30 frames
3585 5062 351

Table S2: Frame length of consecutive gaps present in the dataset

3.2 Experiment 1 - Hybrid Approach:

In the paper, we performed an experiment to show that markerless tracking is possible for pigeons
using the 3D-POP dataset. First, experiment was performed with pigeons with marker attached,
like experimental scenario of Kano et al.[1]. We claim that markerless solution is directly useful
to improve tracking performance for cases where motion capture is already in use. We took a
sample data from our recording sequence and introduced gaps in trajectories to simulate loss of
tracking, then further used markerless approach to fill the gaps to evaluate quality of markerless
3D tracking in comparison with ground truth. The results are demonstrated in Table S3, which
show that using a 2D keypoint detection model and simple triangulation, the gap filling algorithm
provides good accuracy. This is useful already for experiments where missing data with mo-cap
setup is a consistent problem. We also show a simple comparison with interpolation approach to
show that markerless solution have higher chance of filling gaps than data interpolation methods. In
future work, we want to try different strategies to combine multi-view data to get higher prediction
accuracy.

5



RMSEMethod

(mm)
Beak Nose Left

Eye
Right
Eye

Left
Shoul-
der

Right
Shoul-
der

Top
Keel

Bottom
Keel

Tail

RMSEHybrid 8.2 6.5 7.3 6.3 13.8 9.4 13.3 8.9 9.2
RMSELinear 66.3 64.8 62.5 62.7 45.5 42.7 41.3 37.6 45.7

Table S3: Root mean squared Euclidean error (mm) of different approaches used to fill artificially
introduced gaps in a 5 min single pigeon sequence. Hybrid approach uses a 2D DLC model from
each view and triangulated and the linear approach interpolates missing data linearly with data
before and after a given gap.

4 Additional Files

We have provided additional material along with this file.

• Supplementary video : The video is designed to introduce the reader with 3D-POP dataset.
It shows the setup, diversity of the dataset and the annotations on video images.

Click here for youtube link of the video.
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Authors Dataset name
No of. 

Individuals 
No. of views

No. of 
species

Format
Annotation 

method
Annotations Behavior 

Task 
(see below)

Graving et al. Zebra 1 1 1
Image 
(900)

Manual (semi-
automated)

2D keypoints NA 1

Wah et al. CUB-200-2011 1 1 200
Image 

(11788)
Manual

Bouding box  
Part locations 
Part attributes 

Silhouette

NA 7

Mathis et al. Horse-30 1 1 1
Image 
(8114) 

Manual 2D keypoints NA 1

Joska el al. Acinoset 1 1 1
Image 
(7588)

Manual
2D keypoint  

3D Triangulation
Running 1

Ng et al. Animal Kingdom 1 1 850
Image (33k) 

+ Video 
(50Hrs)

Manual
2D keypoints, 

Activity
Varied 1

Bala et al. Open Monkey Studio 1 62 1
Image 

(195,228)
Manual

2D keypoint 
3D Triangulation

NA 1,3

Dunn el al. RAT7M 1 6 1
Video 

(7 million)
Automated 

(mocap)

2D keypoints
3D keypoint

2D-3D 
trajectories

13 
Categories 

using 
clustering 
algorithm

1,2,3,8

Kearney et al. RGB-D Dog 1
20 RGB + 6 

RGBD 
1

Video 
(73,748)

Automated 
(mocap)

2D keypoints
 3D keypoints 
RGB-D, Mask

NA 1,2,8

Yao et al. 
Open Monkey 

Challenge
1

Mixed 
(Single + 

Multiview)

26 Species 
(Primates)

 Images + 
Videos

Manual (semi-
automated)

2D Keypoint NA 1,7



Authors Dataset name
No of. 

Individuals 
No. of views

No. of 
species

Format
Annotation 

method
Annotations Behavior 

Task 
(see below)

Yu et al. AP-10K 1 1
54 (23 

Families - 
mammals)

Image 
(10,015)

Manual
2D keypoints 
Bounding box 
Background 

NA 1

Laurel et al. TRI-MOUSE 3 1 1
Video 

(11,645)
Manual 2D keypoints NA 1,2,4

Laurel et al. PARENTING 2 1 1
Video 
(2670)

Manual 2D keypoint NA 1,2,4

Laurel et al. MARMOSETS 2 1 1
Video 

(15000)
Manual

2D keypoint 
Identity 

NA 1,2,4

Laurel et al. FISH 14 1 1
Video 

(1,100)
Manual 2D keypoint NA 1,2,4

Labugen et al. MacaquePose >= 1 1 1
 Image 

(13,083)
Manual 2D keypoints NA 1,4,5

Badger el al. Cowbird dataset <= 15 8 1
Image 
(1000)

Manual
2D keypoints 
Silhouettes

Multiple 
interactions 

1,7,8

Marshall et al. PAIR-R24M 2 24 1
Video (24.3 

million)

Motion 
capture 

(Automated)

2D-3D keypoints 
Behavior 

interactions

11 
behavior, 3 
interaction 
categories

1,2,3

Ours POP-3D  1-2-5-10 4 1
Video 
(300K 

frames)

Semi-
automatic 
(manual + 

mocap)

2D keypoints 
2D trajectory
 3D keypoint
3D trajectory 

identity

NA 1,2,4,5,6,7



Task Description
1 2D Pose Estimation
2 3D Pose Estimation
3 Activity recognition

4
Identity tracking/ 
Reidentification

5 2D trajectory tracking
6 3D trajectory tracking
7 Object detection
8 3D reconstruction
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