
[Supplementary] AMIGO: Sparse Multi-Modal Graph Transformer with
Shared-Context Processing for Representation Learning of Giga-pixel Images

Ramin Nakhli
University of British Columbia

ramin.nakhli@ubc.ca

Puria Azadi Moghadam
University of British Columbia

puria.azadi@ubc.ca

Haoyang Mi
Johns Hopkins University

hmi1@jhmi.edu

Hossein Farahani
University of British Columbia

h.farahani@ubc.ca

Alexander Baras
Johns Hopkins University

baras@jhmi.edu

Blake Gilks
University of British Columbia

blake.gilks@vch.ca

Ali Bashashati
University of British Columbia

ali.bashashati@ubc.ca

1. Evaluation Details

We used concordance index (c-index) [5] and the p-value
of the LongRank test [1] to measure the performance of our
model and that of the baselines.

C-index is a metric to measure the quality of ranking be-
tween the predicted and the observed survival times. More
specifically, it is defined as Eq. (1)

c =
1

| ε |
∑

Tiuncensored

∑
Tj>Ti

1f(xi)<f(xj), (1)

where 1a<b = 1 if a < b and 0 otherwise, f(xi) is the
predicted survival time for xi, and ε is the ordered pairs of
the data points [5].

The statistical test known as the LongRank test evalu-
ates the validity of the null hypothesis, which states that
there is no difference between the survival curves of two
populations at any given period. Using the median survival
time predicted by the model, we split the patients into two
groups of low-risk (patients with a predicted survival time
greater than the median) and high-risk (patients with a pre-
dicted survival time less than the median). The p-value of
the LogRank test on the survival curves of these two co-
horts demonstrates the separability of the curves (p-value
< 0.05).

In all the experiments, at inference time, we censor the
patients with a survival time greater than 10 and 7 years for
the InUIT and MIBC datasets, respectively.

2. Implementation Details

2.1. AMIGO

All the experiments were performed on a single GeForce
RTX 3090 using Pytorch and DGL packages. The output
feature size of the GraphSAGE layers and the MLP layers
in each branch were set to 128 and 32, respectively. Adam
optimizer with a learning rate of 0.002, a cosine scheduler, a
weight decay of 0.0001, and a batch size of 128 were used
for the training of the models. The Transformer module
of the cross-modal aggregator included 4 MHSAs, and the
BCP was set to 0.1. We also used a sparsity ratio of 0.8,
which was only applied at training time.

2.2. Baselines

For the implementation of the baselines, we used the of-
ficial repository of Patch-GCN1, which also included the
implementation for the DeepSet, Attention MIL, and DGC
methods. The hyperparameters were set to the suggested
values in the paper [3], and we used the NLL loss [6] as
suggested. Similarly, for the Pathomic Fusion model , we
also used the official implementation repositories with the
suggested parameters.

For the HIPT model, the pre-trained weights and model
implementation were both taken from the official repository.
A loss function similar to the one we used for our model
(Cox loss) was used to train an MLP on top of the represen-
tation produced by the pre-trained model. Additionally, we
adopted the Adam optimizer with a learning rate of 0.001.

It is of note to mention that both the baselines and

1https://github.com/mahmoodlab/Patch-GCN

1

https://github.com/mahmoodlab/Patch-GCN


Ablated Feature InUIT MIBC
C-Index (↑) P-value (↓) C-Index (↑) P-value (↓)

No instance Norm 0.53± 0.001 0.15 0.54± 0.005 0.03
No weight sharing 0.56± 0.001 0.06 0.54± 0.016 0.001
Full weight sharing 0.53± 0.001 0.46 0.51± 0.005 0.78
No BCP 0.54± 0.001 0.07 0.58± 0.013 0.38
Transformer attention 0.53± 0.002 0.05 0.55± 0.011 0.90
Inference-time sparsity 0.56± 0.001 0.04 0.55± 0.004 0.08
Non-shared attention 0.54± 0.001 0.13 0.58± 0.003 0.06

AMIGO (Ours) 0.57± 0.002 0.01 0.61± 0.004 < 0.001

Table S3. Full ablation studies of our model.

AMIGO utilize the same data sources (all images regard-
less of stain type). Equivalent to AMIGO’s aggregator, all
baseline models include attention pooling in the last layer
to pick the most relevant data.

3. Heatmap Visualization

We also visualized the heatmaps of our model on the cel-
lular graphs of a MIBC patient in Fig. S1. Interestingly, we
realized that the model learns to pay more attention to the
P16 stain, which is in line with previous studies in bladder
cancer as they showed the importance of Ki67 in the out-
comes of MIBC cases. [4].

4. Masking Visualization

The visualization of the cellular graph after the two
masking operations can be found in Fig. S2. These two im-
ages are generated at two different training iterations from
the same graph. We would like to highlight the variation
in the sub-structural graphs within each cell graph during
training, which leads to a strong augmentation and regular-
ization for the model.

5. Full Ablation Study

The complete results for the ablation studies can be
found in Tab. S3, where both c-index and p-value are re-
ported in each case. Although all of the results support
our design decisions, we found that full weight sharing of
the branches considerably impairs our model’s capacity to
distinguish between cohorts at low and high risk on both
datasets. This finding supports our assertion that a multi-
modal design is crucial for capturing tissue heterogeneity.

6. Effect of Normalization Type

We also compared the performance of our model with
different types of normalization layers applied after the in-
stance attention (Tab. S4). Our results demonstrate that
instance normalization has a superior performance across
both datasets compared to the other types.

Ablated Feature InUIT MIBC
C-Index (↑) P-value (↓) C-Index (↑) P-value (↓)

No Normalization 0.53± 0.001 0.15 0.54± 0.005 0.03
Batch Normalization 0.55± 0.002 0.05 0.62± 0.002 0.05
Layer Normalization 0.56± 0.001 0.02 0.58± 0.010 0.54
Instance Normalization 0.57± 0.002 0.01 0.61± 0.004 < 0.001

Table S4. Effects of different normalization types after the in-
stance attention layer on the performance of our model.

7. Cox vs NLL Loss Function
As was elaborated in Sec. 2.2, we used the NLL loss

for the DeepSet, Attention MIL, DGC, and Patch-GCN as
suggested by Chen et al. [3]. However, to ensure a fair
comparison between our model and the baselines, we also
measured the performance of them using the Cox loss func-
tion (Tab. S5). Similar to [3], we find that these baselines
achieve a better performance with the NLL loss function.

In order to complete the comparison, we also tested our
model using the NLL loss, which demonstrated worse per-
formance compared to Cox loss.

8. Effect of BCP on Baselines
We also explored the effect of our proposed BCP tech-

nique on the baselines. Since BCP was established using
the Cox loss function, the experiments were also conducted
in relation to this loss (Tab. S6). As can be observed, apply-
ing the BCP technique typically improves the performance
of the models, demonstrating the applicability of this tech-
nique.

9. Flops Comparison
The comparison of the number of the parameters and

floating-point operations (FLOPs) for the baselines along-
with that of our model can be found in Fig. S7. Although
our model is a multi-modal cell-centric approach (dealing
with large graphs containing hundreds of nodes), it has less
parameters and FLOPs compared to the baselines.

The parameter efficiency of our model can be linked to
the shared-context processing nature of it, where the ma-
jor parameter bottlenecks are shared across multiple modal-
ities. On the other hand, the FLOPs efficiency is mainly
attributed to the sparse processing of our model.

10. Self-Supervised Pretraining
We also explored the impact of self-supervised graph

representation learning methods such as BGRL [2] on the
performance of our model.

Fig. S8 depicts an overview of the BGRL framework.
The ”online” and ”target” (slow-moving average of the on-
line model) models function together in this architecture to
produce representations for the two augmentations of the



(a) P16 (b) CK20

Figure S1. Visualization of heatmap graphs for a patient with P16 and CK20 stains.

(a) Masking 1 (b) Masking 2

Figure S2. Visualization of cellular graphs after masking.

same input graph. The adopted augmentation operations in-
clude random dropping of nodes and edges of the graph,
and the loss function is a cosine distance loss that brings the
cosine similarity of the graph representations close to 1.

We tested this approach in two scenarios: 1) single-
modal pre-training; 2) multi-modal pre-training. In the for-
mer, we only pre-train the encoders of each multi-modal

branch using the BRGL framework. However, in the lat-
ter, we initialize the encoder weights with the pre-trained
ones from the single-modal version and train the rest of
our model (MLPs, instance attention, and the transformer
model) using BGRL. Finally, in both scenarios, we fine-
tuned the pre-trained model using the survival information.
The results of our experiments demonstrate that the BGRL



Method Feature Extractor Loss InUIT MIBC
C-Index (↑) P-value (↓) C-Index (↑) P-value (↓)

DeepSet

ResNet34 NLL 0.50± 0.0 0.43 0.50± 0.001 −
ResNet34 Cox 0.50± 0.0 − 0.50± 0.0 −
ResNet50 NLL 0.53± 0.007 0.40 0.45± 0.004 0.28
ResNet50 Cox 0.50± 0.0 − 0.51± 0.001 −

Attention MIL

ResNet34 NLL 0.51± 0.004 0.62 0.59± 0.007 0.04
ResNet34 Cox 0.50± 0.002 0.22 0.50± 0.002 0.76
ResNet50 NLL 0.55± 0.004 0.65 0.55± 0.004 0.57
ResNet50 Cox 0.51± 0.003 0.57 0.47± 0.001 0.08

DGC

ResNet34 NLL 0.53± 0.007 0.46 0.58± 0.007 < 0.001
ResNet34 Cox 0.52± 0.003 0.69 0.46± 0.012 0.67
ResNet50 NLL 0.55± 0.005 0.31 0.54± 0.007 0.64
ResNet50 Cox 0.51± 0.001 0.75 0.50± 0.010 0.36

Patch-GCN

ResNet34 NLL 0.53± 0.008 0.45 0.50± 0.004 0.005
ResNet34 Cox 0.53± 0.002 0.41 0.47± 0.005 0.58
ResNet50 NLL 0.50± 0.004 0.25 0.46± 0.009 0.33
ResNet50 Cox 0.52± 0.002 0.80 0.52± 0.006 0.14

HIPT Hierarchical ViT NLL 0.53± 0.001 0.87 0.46± 0.003 0.54
Hierarchical ViT Cox 0.50± 0.002 0.18 0.53± 0.010 0.10

AMIGO (Ours) ResNet34 NLL 0.57± 0.003 0.02 0.57± 0.010 < 0.001
AMIGO (Ours) ResNet34 Cox 0.57± 0.002 0.01 0.61± 0.004 < 0.001

Table S5. Comparison of the Cox and NLL loss functions for the baselines and our model.

0 100 200 300 400 500 600 700 800 900

Parameter Count (K)

0

200

400

600

800

1000

F
LO

P
s 

(M
)

Attention MIL - ResNet34 DGC - ResNet50

DGC - ResNet34

DeepSet - ResNet50

DeepSet - ResNet34

Attention MIL - ResNet50

AMIGO (ours)

Figure S7. Parameter vs. Flops comparison of our model with the
baselines. The size of the points shows is relative to the multipli-
cation of its parameter count and FLOPs.

M
LP

M
LP

Lcosine

Lcosine

Augmentation 1

Augmentation 2

Input Graph

EM
A

Target 
Encoder

Online 
Encoder

Figure S8. Self-supervised Model

self-supervised pre-training does not help achieve a consis-
tent improvement over both datasets compared to the su-
pervised setting (Tab. S9). We believe this shows that the
self-supervised learning for histopathology graphs requires
special considerations that can be a part of our future works.

References
[1] J Martin Bland and Douglas G Altman. The logrank test. Bmj,

328(7447):1073, 2004. 1
[2] Feihu Che, Guohua Yang, Dawei Zhang, Jianhua Tao, and

Tong Liu. Self-supervised graph representation learning via
bootstrapping. Neurocomputing, 456:88–96, 2021. 2

[3] Richard J Chen, Ming Y Lu, Muhammad Shaban, Chengkuan
Chen, Tiffany Y Chen, Drew FK Williamson, and Faisal Mah-



Method Feature Extractor BCP InUIT MIBC
C-Index (↑) P-value (↓) C-Index (↑) P-value (↓)

DeepSet

ResNet34 w/ BCP 0.50± 0.0 − 0.50± 0.001 −
ResNet34 w/o BCP 0.50± 0.0 − 0.50± 0.0 −
ResNet50 w/ BCP 0.53± 0.007 0.40 0.51± 0.001 −
ResNet50 w/o BCP 0.50± 0.0 − 0.51± 0.001 −

Attention MIL

ResNet34 w/ BCP 0.55± 0.002 0.84 0.52± 0.016 0.04
ResNet34 w/o BCP 0.50± 0.002 0.22 0.50± 0.002 0.76
ResNet50 w/ BCP 0.52± 0.001 0.44 0.53± 0.004 0.85
ResNet50 w/o BCP 0.51± 0.003 0.57 0.47± 0.001 0.08

DGC

ResNet34 w/ BCP 0.51± 0.002 0.47 0.51± 0.009 0.61
ResNet34 w/o BCP 0.52± 0.003 0.69 0.46± 0.012 0.67
ResNet50 w/ BCP 0.53± 0.003 0.92 0.50± 0.007 0.12
ResNet50 w/o BCP 0.51± 0.001 0.75 0.50± 0.010 0.36

Patch-GCN

ResNet34 w/ BCP 0.53± 0.002 0.44 0.55± 0.009 0.07
ResNet34 w/o BCP 0.53± 0.002 0.41 0.47± 0.005 0.58
ResNet50 w/ BCP 0.52± 0.003 0.77 0.58± 0.009 0.16
ResNet50 w/o BCP 0.52± 0.002 0.80 0.52± 0.006 0.14

HIPT Hierarchical ViT w/ BCP 0.49± 0.001 0.33 0.49± 0.001 0.89
Hierarchical ViT w/o BCP 0.50± 0.002 0.18 0.53± 0.010 0.10

AMIGO (Ours) ResNet34 w/ BCP 0.57± 0.002 0.01 0.61± 0.004 < 0.001
AMIGO (Ours) ResNet34 w/o BCP 0.54± 0.001 0.07 0.58± 0.013 0.38

Table S6. Comparison of the effect of BCP on the baseline models.

Method Pre-training Type InUIT MIBC
C-Index (↑) P-value (↓) C-Index (↑) P-value (↓)

Self-supervised (BGRL) Single-Modal 0.56± 0.002 0.04 0.61± 0.008 0.39
Self-supervised (BGRL) Multi-Modal 0.55± 0.005 0.28 0.62± 0.011 0.04

Table S9. Comparison of self-supervised training.

mood. Whole slide images are 2d point clouds: Context-aware
survival prediction using patch-based graph convolutional net-
works. In International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 339–349.
Springer, 2021. 1, 2

[4] Haoyang Mi, Trinity J Bivalacqua, Max Kates, Roland Seiler,
Peter C Black, Aleksander S Popel, and Alexander S Baras.
Predictive models of response to neoadjuvant chemotherapy
in muscle-invasive bladder cancer using nuclear morphology
and tissue architecture. Cell Reports Medicine, 2(9):100382,
2021. 2

[5] Harald Steck, Balaji Krishnapuram, Cary Dehing-Oberije,
Philippe Lambin, and Vikas C Raykar. On ranking in sur-
vival analysis: Bounds on the concordance index. Advances
in neural information processing systems, 20, 2007. 1

[6] Shekoufeh Gorgi Zadeh and Matthias Schmid. Bias in cross-
entropy-based training of deep survival networks. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
43(9):3126–3137, 2020. 1


	. Evaluation Details
	. Implementation Details
	. AMIGO
	. Baselines

	. Heatmap Visualization
	. Masking Visualization
	. Full Ablation Study
	. Effect of Normalization Type
	. Cox vs NLL Loss Function
	. Effect of BCP on Baselines
	. Flops Comparison
	. Self-Supervised Pretraining

