Appendix
A. Constrained K-means Additional Details

Qian et al. [32] proposed the online mini-batch solver
for the constrained K-means objective (Eqn. 3) proposed
by [6], and used it for unsupervised representation learn-
ing. In our method, we adopted the same solver but for a
different purpose; we use online clustering as an alternative
to offline nearest neighbour search to identify neighbour-
hood of images and leverage such information to perform
our label refinement procedure. To that end, due to the em-
pirical observation that the maximal value of dual variables
is well bounded, our Eqn. 6 is an approximation of the orig-
inal dual variables update proposed by Qian et al. after each
mini-batch:
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where IIa; projects the dual variables to the domain A =
{pIVE, pr. > 0, ||pll1 < 6}.

We refer the readers to the original paper for guarantees
of performance complete proofs.

Constrained vs unconstrained clustering. Our purpose in
PROTOCON is to use K-means as an alternative for offline
nearest-neighbours retrieval, which automatically mandates
that we use equi-partition clustering by constraining mini-
mum cluster size - to be the number of nearest neighbours
n. However, we relax this constraint to v = 0.9n to allow
cluster sizes to slightly vary to capture the inherent imbal-
ance in salient properties of different classes. Empirically,
we found this to work well across the datasets we used. We
also tested the setting with v = 0 which translates to uncon-
strained clustering. This setting was unstable and did not
lead to performance gains; where we found that clustering
collapses to only a few clusters. For example in CIFAR-10
(40 labels) setting, K-means converged to only 20 clusters.
The consequence is that we have only 20 cluster pseudo-
labels to use for refining all the unlabeled samples in sub-
sequent epochs which is a very general summary of neigh-
bourhoods and hence it hurts the performance rather than
help it. Please refer to Tab. 4 for further ablations on the
value of n.

Mini-batch updates vs Epoch updates Another decision
choice is the frequency of cluster centroids updates (Eqn. 7).
Since PROTOCON does not memorise image representa-
tions, centroids can be updated either every mini-batch, or
by accumulating representations of images based on their
cluster assignment throughout an epoch and then perform-
ing the update once at the end of the epoch. The former
solution is useful in helping K-means convergence which
requires multiple assignment-update iterations, however it

leads to higher variance due to the stochastic nature of mini-
batches. On the other hand, the latter solution is also sub-
optimal as it requires long time for clusters to converge.
Accordingly, we adopted a warmup period during which
we use mini-batch updates to speed up convergence, hence-
forward, we switch to epoch updates to stabilise the cen-
troids and exhibit less variance. We found that for smaller
datasets, 20 epochs of warmup are sufficient, while for the
larger datasets with more classes, we increase the warmup
period to 70 epochs.

B. Additional Training Dynamics Analysis

Here, to further understand PROTOCON, we examine
more of its training dynamics.

Clustering purity vs pseudo-label accuracy. First, we in-
vestigate the properties of the clusters as training proceeds.
We follow a similar setup like that used to obtain Fig. 4, but
this time, we use the captured statistics to calculate cluster
purity for each class. Specifically, by the end of each epoch,
we count the members of each cluster (e.g. for CIFAR-10,
we use K = 250, so we count the number of images as-
signed by K-means to each of the 250 clusters), then for
each cluster, we check the most dominant class among its
members based on their ground truth labels. Subsequently,
we calculate the purity of each cluster as the ratio between
the number of images belonging to the dominant class to the
total number of cluster members. Finally, to calculate purity
for a given class, we average the described ratio across all
clusters for which that class is the dominant one. In Fig. 5,
we display cluster purity per class of CIFAR-10 during the
first 130 epochs of training side-by-side to the pseudo-label
accuracy for each class. This is to allow us to investi-
gate the clustering effectivness in the critical initial phase
of training and how it affects the obtained pseudo-labels
quality. We see that for the more distinguishable classes
(e.g. truck or ship), clustering purity increases significantly
faster than others matching with a corresponding increase in
pseudo-label accuracy. Whereas for more confusing classes
(e.g. horse and deer), the cluster purity suffers a slow in-
crease accompanied with what seem to be high disagree-
ment between cluster and classifier pseudo-labels leading
to an overall slow increase of pseudo-label accuracy (note
that we display the refined pseudo-label accuracy in the fig-
ure). Finally, the most confusing classes (e.g. cat and dog)
have the lowest cluster purity leading to a low pseudo-label
accuracy at first, but we notice that once the majority of
other classes are learnt (i.e. have higher accuracy, the more
confusing classes start to catch up (notice the cat and dog
curves towards the end of Fig. 5-b). This is in line with our
expectation that easy classes are first learnt by the network,
then it moves on to discriminate the less obvious ones.

Pseudo-label Retention Ratio. Like the state-of-the-
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Figure 5. Analysis Plots. (a): Cluster Purity per class of CIFAR-10 vs training epochs, when trained using PROTOCON with 4 images per
class. (b): Pseudo-label accuracy per class vs training epochs. Best viewed in color.
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Figure 6. Analysis Plots. (a): Pseudo-label accuracy vs epochs. (b): Retention rate vs epochs which denotes the ratio of unlabeled samples
retained by each method for pseudo-labeling (i.e. with maximum confidence score higher than the threshold 7.)

art SSL. method (DebiasPL [42]), PROTOCON is also a
confidence-based pseudo-labeling method albeit with ad-
ditional ingredients. Hence, both methods only retain
high-confidence unlabeled samples for pseudo-labeling. In
Fig. 6, we examine the retention rate (i.e. ratio of samples
with maximum confidence exceeding the threshold 7) for
both methods as training proceeds (b), and compare it with
the pseudo-labeling accuracy exhibited by each (a). We ob-
serve that even though our method outperforms DebiasPL,
in terms of accuracy, throughout the training, it consis-
tently retains almost 10% less samples for pseudo-labeling.
This finding speaks to our original motivation (see Sec. 1)
with regards to the over-confidence problem underpinning
the lower performance of SOTA methods in label-scarce
regime. Compared to its counterparts, PROTOCON is more
conservative when it comes to admitting a sample as “re-

liable” for pseudo-labeling; primarily because the refined
pseudo-labels we employ is a combination of the original
classifier pseudo-label and the neighbourhood pseudo-label.
As we show in Fig. 3-a, the disagreement between the two
results in a lower overall confidence in predictions. Such
conservative nature of PROTOCON is key to avoiding con-
firmation bias even when there is only a few labeled samples
available.

C. PROTOCON in Moderate-label Regime

In this section, we examine our method performance
when more than 10 images per class are available (which
we call moderate-label regime). To recap, our method pri-
marily aims to address confirmation bias in label-scarce set-
tings. Yet, intuitively, the refinement strategy might also



Table 5. CIFAR and Mini-ImageNet accuracy in moderate-label regime for different amounts of labeled samples averaged over 3 different
splits. All results are produced using the same codebase and same splits.

CIFAR-100 Mini-ImageNet
Total labeled samples 2500 4000 2500 4000
FixMatch [38] 71.71£0.35 74.08+0.13 44.534+0.44 50.21+0.09
FixMatch + DB [42] 72.44+0.15 74.434+0.06 46.18+£0.23  52.00+0.04
PROTOCON 73.31+0.43 75.18+0.02 48.61+0.34 53.67+0.06
delta against best baseline +0.87 +0.75 +2.43 +1.67
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Figure 7. Additional examples to complement Fig. 4.

help moderate-label regimes. As such, we investigate this
hypothesis by running additional experiments on CIFARs
and Mini-ImageNet with 25, and 40 images per class. We
find that for CIFAR-10, performance already saturates af-
ter 10 images per class and most of the compared methods
perform similarly. As for the other two datasets with 100
classes each, we find PROTOCON to still provide perfor-
mance gains. However, with more labels available, we find
that using less neighbouring samples to perform the refine-
ment (i.e. less n) works better. Specifically, we reduce n by
a factor of 10 (i.e. n = 25 instead of n = 250). Addition-
ally, since with more labels, all the compared methods ex-
hibit significantly less variance, we report results only based
on 3 runs instead of 5. Please refer to the results in Tab. 5.

D. Additional Quantitative Examples

Here, we detail our experimental setup for obtaining
Fig. 4 and we provide additional examples in Fig. 7.

Experimental Setup. As training proceeds, for each
epoch, we capture per-image statistics such as: the classi-
fier pseudo-label and its max score (i.e. arg maxp,, and
max p,, respectively); cluster pseudo-label and its max
score (i.e. argmax z® and max z® respectively), sample
prototypical score (i.e. g -Py) denoting how close a sample
is to its class prototype. Subsequently, to obtain the proto-
typical images (in middle panel of Fig. 4 and 7), we rank
images of each class based on their prototypical score av-
eraged over the first 500 epochs of training. Additionally,
we identify images for which the cluster pseudo-labels are,

on average, more accurate than that of the classifier (and
the other way around) by comparing the respective pseudo-
labels with the ground truth label of each image. Thus,
we display on the left panel images for which the classifier
pseudo-label is, on average, more accurate than the cluster
pseudo-label, and the opposite on the right panel.

Additional Examples. In Fig. 7, we provide more exam-
ples to complement those in Fig. 4. To reiterate, we see that
the cluster pseudo-labels which capture the samples’ neigh-
bourhood in the prototypical space (trained via our proto-
typical loss) are usually more accurate if images are more
prototypical even if they are lacking discriminative features
(e.g. blurry images or zoomed out images). In contrast,
the pseudo-labels in the class probability space (trained via
one-hot cross entropy) are usually more accurate for images
with discriminative features (e.g. car bumpers or deer horns)
even if they lack prototypicality. The diversity of views cap-
tured via the different labels is key to PROTOCON’s effec-
tiveness as it helps the classifier learns via the disagreement
between the two views through the refined label.



