
Supplementary material for PIP-Net: Patch-Based Intuitive Prototypes for
Interpretable Image Classification

Meike Nauta
University of Twente, the Netherlands

University of Duisburg-Essen, Germany
m.nauta@utwente.nl

Jörg Schlötterer
University of Duisburg-Essen, Germany

joerg.schloetterer@uni-due.de

Maurice van Keulen
University of Twente, the Netherlands

m.vankeulen@utwente.nl

Christin Seifert
University of Duisburg-Essen, Germany

christin.seifert@uni-due.de

1. Implementation and Training Details
1.1. Training details

We use a batchsize of 128 for pretraining the prototypes,
and a batch size of 64 during the second training phase with
classification loss, such that PIP-Net fits on one GPU. Each
mini-batch contains two views of an image, resulting in
128 inputs forwarded through f in a single mini-batch. We
pretrain the prototypes of PIP-Net for 10 epochs, followed
by 60 epochs for the second training phase (classification
phase).

Weights ωc of the linear layer are initialized by sam-
pling from N (1.0, 0.1). Weights < 1e − 3 in this layer
are clamped to zero, in order to prevent negative weights.
During pretraining, weight λT = 1 for the tanh-loss is 5,
and λA is slowly increased to 1 (as a warm start, to prevent
the trivial solution that every patch gets the same encoding).
During the second training phase, weights for the losses are
set to λC = λT = 2, λA = 5. We didn’t do an extensive
hyperparameter search in order to save energy and comput-
ing resources, and rather chose reasonable values. For the
first three epochs in the second stage, backbone f is frozen
and only weights ωc of the linear layer are trained. During
inference, prototype presence scores p < 0.1 are ignored.

1.2. Fine-grained Localization

Overlaying the 7×7 latent output from ResNet as used in
e.g. ProtoTree [6] or ProtoPNet [1] over a 224× 224 image
yields non-overlapping patches of exactly 32 × 32 pixels.
Similarly, we also use an image patch size of 32× 32. For
visualization purposes, the image patch can then be resized
to the original image size. It is a design choice whether a
prototype is visualized based on a single latent patch, as
done in e.g. PIP-Net and ProtoTree, or as a larger image area
containing all latent patches that are similar to the prototype

Algorithm 1: Training a PIP-Net
Input: Training set T , nEpochs

1 initialize PIP-Net with pretrained backbone f with
ωf and a fully-connected layer with
ωc ∈ N (1.0, 0.1);

2 for t ∈ {1, ..., nEpochs} do
3 randomly split T into B mini-batches;
4 for (xb,yb) ∈ {T 1, ...,T b, ...,T B} do

/* Data Augmentation */
5 xb = AugWithLocation(xb);
6 x′

b = AugNoLocation(xb);
7 x′′

b = AugNoLocation(xb);
/* Training Prototypes */

8 z′ = f(x′
b), z

′′ = f(x′′
b );

9 p′ = MaxPool(z′), p′′ = MaxPool(z′′);
10 compute loss LA(z

′, z′′);
11 compute loss (LT (p

′) + LT (p
′′))/2.;

12 if pretraining phase then
13 Minimize losses by updating ωf ;
14 else

/* Training Classifier */
15 p = concat(p′,p′′);
16 o = log((pωc)

m + 1);
17 compute loss LC(σ(o),y);
18 Minimize losses by updating ωf , ωc, m;

as done in e.g. ProtoPNet.
Although we follow existing part-prototype methods by

using an image patch size of 32×32 for an input of 224×224,
we allow a more fine-grained localization by adapting the
strides of ConvNeXt-tiny [3] and ResNet50. This small
change keeps the model architecture compatible with pre-
trained weights of the standard architectures, while out-

1



AugWith
Location

AugNo
Location

AugNo
Location

Figure 1. Data augmentation is applied in two phases. The first
phase applies location-oriented transformations in order to create
more diversity in the training data. The second phase applies colour-
related transformations in order to create two different views of an
image: x′ and x′′.

putting a more fine-grained patch grid z. We reduced the
stride of the last two layers from 2 to 1, resulting in a 28×28
output for ResNet50 and 26× 26 for ConvNeXt-tiny. As a
result, the latent grid still corresponds to image patches of
32×32, but then with overlap between the patches. We used
CNN backbones pretrained on ImageNet, and pretrained on
iNaturalist2017 [7] for CUB, similar to ProtoTree [6].

1.3. Data Augmentation

TrivialAugment [5] is used to augment the images. This
recent augmentation strategy is parameter-free and only ap-
plies a single augmentation to each image. We however apply
TrivialAugment twice, as shown in Fig. 1 and indicated in
Line 5-7 of Algorithm 1. The first augmentation operation
applies location-related transformations, including shear-
ing, rotation and translation. This augmented image is then
used as input to another TrivialAugment operation, which
applies color-related transformations, including brightness,
sharpness, hue and contrast. Since these transformations are
randomly applied, two runs of the same function result in
two different views: x′ and x′′. To include even more varia-
tion between the two views, we also include a random crop
of size 95% to 100% of the input. In that way, slight location
variation is incorporated between the two views but an image
patch at a particular location still roughly corresponds to the
same pixels in both views, and can therefore be optimized to
get a similar prototype.

1.4. CUB Prototype Purity

The CUB-200-2011 dataset [8] contains pixel locations
of the center of 15 different object parts. For three object
parts, the dataset distinguishes between left and right (e.g.
left eye and right eye). Since this difference is not needed
for evaluating interpretability, we ignore the left and right
specifications and select the pixel location (either left or
right) that is nearest to the particular patch.

0 10 20 30 40 50 60
Epochs

65%

70%

75%

80%

85%

90%

95%

100%

PIP-Net-C (CUB)
PIP-Net-R (CUB)

Figure 2. Sparsity ratio over time for PIP-Net trained on CUB, with
ConvNeXt (C) or RexNet50 (R) backbone. Measured at the end of
each epoch during the second training phase. Best viewed in color.

2. Sparsity and Compact Explanations

Sparse weights between prototypes and classes improve
interpretability, as it reduces the number of relevant pro-
totypes for a class and hence decreases explanation size.
Rather than developing our own activation function, one
may wonder why we don’t apply an existing sparsity method.
Existing sparsity and pruning methods are mainly developed
for reducing memory and computation costs [2] and are
therefore not directly relevant to our interpretability goal.

Specifically, often the sparsity ratio has to be predeter-
mined by the user [2, 4], whereas we aim for maximum
classification performance where the feasible sparsity ratio
will depend on the dataset and classification task. Addi-
tionally, other existing sparsity methods apply pruning after
training a dense model [2, 4]. Instead, we can keep a dense
model and are only interested in sparsifying the last linear
layer. Freezing backbone f and only pruning connections
would imply that our prototypes are frozen rather than being
optimized for sparse classification. We therefore did not
apply existing sparsity methods but rather found that con-
structing a novel training mechanism (output scores o with
LC) that optimizes classification performance and sparsity
simultaneously was most effective.

Figure 2 shows the sparsity ratio of PIP-Net after each
epoch, defined as the fraction of weights in the linear classi-
fication layer with a value < 1e− 3 (which are set to zero).
It can be seen that PIP-Net already learns sparse connections
within a few epochs, because of the pretrained prototypes.
The sparsity ratio for PIP-Net-R is usually slightly higher
than for PIP-Net-C since PIP-Net starts with 2048 proto-
types for ResNet (i.e., 2048 ∗ 200 weights), in contrast to
768 prototypes for ConvNeXt. We found that the last epochs
mainly improve the prototype purity and have less influence
on the sparsity.



3. Handling OoD Data
Fig. 3 shows more predictions of PIP-Net trained on

PETS, confirming that PIP-Net behaves intuitively by design:
it gives near-zero scores to out-of-distribution (OoD) data
and can also handle multi-object images.

4. Prototype Visualizations
A prototype in PIP-Net is a node in the neural network

that is activated (output near 1) when the prototypical part is
detected in the input image, and near 0 otherwise. To visual-
ize what a particular prototype represents, we visualize the
image patches that give the highest prototype presence scores.
Each row in a subfigure of Fig. 4 shows representative image
patches of one prototype. It can be seen that image patches
corresponding to a prototypical part look highly similar.



(a) Top-3 predictions of PIP-Net for in-distribution images, taken from the PETS test set. Center image shows a misclassification.

(b) Top-3 predictions of PIP-Net for multi-object images. An animal from a different class from the PETS dataset is manually pasted
into an original image. PIP-Net can classify multiple objects even though it was trained on single-object images only.

(c) Top-3 predictions of PIP-Net trained on PETS for out-of-distribution images. Predictions are zero for non-animal images. PIP-Net
assigns low scores for near-distribution images with animals, which is reasonable. E.g., the right image of a water buffalo gets low
scores assigned since it has some (but not much) similarity with a black dog species.

Figure 3. Top-3 predictions of PIP-Net trained on PETS (37 cat and dog species) for different types of input. PIP-Net can classify an image
as belonging to multiple classes (middle row) or no class (bottom row). It is therefore able to deal with out-of-distribution data, making the
model more intuitive for the user.



(a) CUB (b) CARS (c) PETS (d) PartImageNet

Figure 4. Prototypes learned by PIP-Net (ConvNeXt backbone), one per row, visualized with their top-10 image patches. First 50 prototypes
with a class-relevance weight > 0 per dataset. Some prototypes can be rare, having less than 10 similar image patches (especially for
datasets such as CUB with a low number of images per class). As a result, image patches with a lower similarity to the prototype are shown
to complete the top-10.



References
[1] Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia

Rudin, and Jonathan K Su. This looks like that: Deep learn-
ing for interpretable image recognition. In H. Wallach, H.
Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R.
Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. 1

[2] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,
and Alexandra Peste. Sparsity in deep learning: Pruning and
growth for efficient inference and training in neural networks.
Journal of Machine Learning Research, 22(241):1–124, 2021.
2

[3] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichten-
hofer, Trevor Darrell, and Saining Xie. A convnet for the 2020s.
In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 11976–11986,
June 2022. 1

[4] Decebal Constantin Mocanu, Elena Mocanu, Tiago Pinto, Se-
lima Curci, Phuong H. Nguyen, Madeleine Gibescu, Damien
Ernst, and Zita A. Vale. Sparse training theory for scalable
and efficient agents. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’21, page 34–38, Richland, SC, 2021. International
Foundation for Autonomous Agents and Multiagent Systems.
2

[5] Samuel G. Müller and Frank Hutter. Trivialaugment: Tuning-
free yet state-of-the-art data augmentation. In Proceedings of
the IEEE/CVF International Conference on Computer Vision
(ICCV), pages 774–782, October 2021. 2

[6] Meike Nauta, Ron van Bree, and Christin Seifert. Neural
prototype trees for interpretable fine-grained image recognition.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 14933–14943,
June 2021. 1, 2

[7] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen
Sun, Alex Shepard, Hartwig Adam, Pietro Perona, and Serge
Belongie. The inaturalist species classification and detection
dataset. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2018. 2

[8] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The Caltech-UCSD Birds-200-2011 Dataset. Technical Report
CNS-TR-2011-001, California Institute of Technology, 2011.
2


	. Implementation and Training Details
	. Training details
	. Fine-grained Localization
	. Data Augmentation
	. CUB Prototype Purity

	. Sparsity and Compact Explanations
	. Handling OoD Data
	. Prototype Visualizations

