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In this supplementary material for Unsupervised Domain

Adaptation Regression by Aligning Inverse Gram Matrices,
we provide additional discussions on the transferability, im-
plementation, and limitation of our method.
In Section 1, we first present an additional analysis of the
representation learned from our method. We then provide
in Section 2, a short explanation on the algebraic details
of the Moore-Penrose pseudo-inverse. An additional ab-
lation study is provided to compare an alternative way of
OLS motivated alignment, in Section 3. More dataset in-
formration and implementation details are also provided in
Section 5 and 6. In Section 7, we discuss the limitations of
our method. Our code for the main paper is also attached.

1. Transferability of the representation

To better understand the learned representation of our
model, we visualize the A-distance [I] of the represen-
tations trained by different methods in Figure Ala. The
A-distance is a measure for distribution discrepancy and
is used to evaluate the transferability of the representa-
tions [2]. As shown in Figure Ala, our method achieves the
lowest A-distance, indicating that representations trained by
DARE-GRAM can lead to better transferability.

In addition, we present the representation scale differ-
ence between the source and target in terms of the L2 norm
eigenvalue differences. This scale difference is defined the
same as Equation 11 in the main paper. As shown in Figure
Alb, our method aligns the scales better than other meth-
ods.

We further conduct PCA analysis and visualize the most
dominant principal components explaining the Z# matrix
(squared eigenvalues of Z), and study their correlation with
the target output y. Figure A2 shows that the two PCA prin-
cipal components on the target test data are highly corre-
lated with one dimension of the output and almost match
the ground truth for DARE-GRAM on two of the three re-
gression tasks in the dSprites dataset.
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(a) A-distance comparison for dif- (b) Scale difference of the represen-
ferent methods. tation between source and target.

Figure Al. Transferability of the representation trained by differ-
ent methods on the dSprite task C — S. Our method achieves the
lowest A-distance. The scales are also well aligned by our method.

2. Moore-Penrose Pseudo-Inverse

In this section, we provide more details on the character-
istics of the pseudo-inverse. The discussion in this section
is well-studied and we use heavily the notations and conclu-
sions from [10].

In the main paper, we proposed to use the Ordinary least
squares (OLS) formulation in the context of Unsupervised
Domain Adaptation. To find a regressor /3 for the relation-
ship Z8 = Y, where Z is the feature matrix, and Y is
the ground truth. The closed-form solution for the ordinary
least squares is given by

B=(zTz)"1zTy. (D)

In the main paper, we discussed how Z7Z could be
non-invertible, and the pseudo-inverse can be of use in this
case. Here we provide more details of the Moore-Penrose
pseudo-inverse.

Definition : Given a matrix A € RP*. The Moore-
Penrose pseudo inverse of A is denoted as A™ and the fol-
lowing properties hold [10]:

(i) AATA=A
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Figure A2. PCA Projection of embedding from different techniques on the dSprites data set C — S.

(i) ATA4+ AT = AT
(iii) AA™T and AT A are symmetrical matrices.

Proposition 1 Every real matrix has a unique Moore-
Penrose pseudo-inverse matrix.

Proposition 2 Given a nonsingular matrix A, then A* =
A—l

Proposition 3 The pseudoinverse of the pseudoinverse is
the original A, (AT)T = A

Proposition 4 The pseudoinverse of the product of ma-
trices if the produce of the pseudoinverse of each individual
matrix (AB)T = BT AT

Theorem 1 The minimum of || Az —y||?, can be obtained
such as z = ATy, and is unique.

AT = (AT A)TAT 2

Proof of the above theorem can be found in [10].

Algorithms

While the Moore-Penrose pseudo-inverse of an A matrix
can be computed using the SVD decomposition, as shown
in the main paper. An exact calculation can be derived using
the Q) R decomposition [4] of matrix A. The Gram—Schmidt
method and Householder transformation are two methods
to obtain the ) R decomposition of A. Given an orthogonal
matrix () calculated from the Householder transformation
and an upper triangular matrix R defined as:

R= 3)

with R; an upper triangular invertible matrix of shape k x
k (where k was introduced in the main paper). Then the
pseudo-inverse can be found :

R7'| 0

AT = “)

The existence and uniqueness of the Moore-Penrose
pseudo-inverse provide an ideal candidate solution for the
subspace alignment presented in this paper.

Based on the characteristics described in this section, in
the next section, we show that there are alternative ways to
align the domains other than the proposed one in the main
paper. We then ablate them in the next section by empirical
experiments.

3. Ablation: What if we use Z* instead of the
Inverse Gram Matrix for the alignment

DARE-GRAM In the main paper, we proposed to align the
angle of (Z7Z)~! and the scale of Z. Intuitively, regres-
sion analysis aims at estimating the relationships between
the output variable to the dimensional features. Given a cal-
ibrated linear regressor on the source domain, and without
hurting the model generalizability the target features should
have similar feature interaction and intensity to the source
features. The Gram matrix can retrieve this information
since it describes the activation for each variable of the em-
bedding dimensions and summarises the pairwise interac-
tions between the different features. While being a square
matrix of the same dimension as the embedding dimension.



Method C—N C—S N—C N—S S—C S—N
Z allignement (RSD) 0.37 0.36 0.17 0.61 0.07 0.10
Z7 allignment (alternative) 0.98 0.89 did not converge 0.65 0.11 0.30
DARE-GRAM (ours) 0.30 0.20 0.11 0.25 0.05 0.07

Table A1. Comparison results between aligning Z , aligning Z ™, or our proposed inverse Gram matrix (Z” Z) ™" on the dSprites regression

tasks. All results are shown in sum of MAE with the ResNet-18.

Therefore, given the OLS closed-form solution [5]:
B=(Z2"2)"1 2Ty, (5)

we proposed to align the angle of (Z7Z)~! and the scale
of Z.

Alternative View An alternative choice would be using
both terms (Z72Z)~1Z7 together for the alignment. As
shown in the previous section from the Equation 2, this term
corresponds to the the pseudo-inverse of Z.

We ablate this choice here. Empirical results in Table
Al show that the use of the pseudo-inverse Z* as a basis
for alignment does not lead to good performance. This for-
mulation projects the Gram matrix onto samples of Z of size
b x p. Therefore, permutations of the matrix samples would
lead to a different matrix, which is not the desired behavior
for aligning the source and target domains.

4.1s Z aligned when (Z7Z)~ is aligned

We now present the cosine similarity of the subspaces of
{Zs,2Z;}, as well as {(ZTZ,)71,(ZF Z;)~'} on dSprites
dataset. We present the empirical results after deploying
the two different strategies (align Z or (Z7 Z)~1).

As shown in Table A2, when aligning Z, the inverse
Gram is generally not well aligned. This is consistent with
our synthetic example in the main paper. An interesting ob-
servation is that the mismatch is significant on the task of
N — S, which is also the task where our method has the
largest improvement.

In contrast, using our method to align the inverse Gram
(ZTZ)~! can lead to a well-aligned Z for dSprites tasks,
as also suggested by Figure A2.

Align. Strategy|Represent. C—+NC—SN—=-CN—=SS—CS— N|Avg

. Z 089 097 085 091 100 095 |0.93
(z¥z)=1 053 044 038 [ 021 100 090 [0.58
(2T 7)1 ‘Z 096 098 092 096 099 0.99 ‘0.97

(zTZ)=' 058 097 090 098 099 1.00 |0.90

Table A2. Cosine similarity on the alignment of Z or (27 Z)7.

5. Additional Dataset Information

We evaluated our proposed method in the main paper on
three domain adaptations for regression benchmark datasets

used in previous works [2,7]: dSprites [

1, MPI3D [6] and

Biwi Kinect [3]. We now provide the variation factors for
each of the datasets used in this paper, in Table A3 to Ta-

ble AS.
Factor Values Task
Scale 6 values in [0.5, 1] Regression
Orientation | 40 values in [0, 27] Regression
Position X 32 values in [0, 1] Regression
Position Y 32 values in [0, 1] Regression
Shape Y 3 values Classification

Table A3. Variations factor values on dSprites dataset

Factor Values Task

Horizontal Axis | 40 values in [0, 39] Regression

Vertical Axis 40 values in [0, 39] Regression
Object color 6 values Classification
Object shape 6 values Classification
Object size 2 values Classification
Camera height 3 values Classification
Background Color 3 values Classification

Table A4. Variations Factors values in MPI3D dataset

Factor Values Task
Yaw Values € [-92.044,231.352] Regression
Pitch Values € [-87.7066,246.684] | Regression

Roll angle | Values € [754.182,1297.45] | Regression

Table AS. Variations Factors values in Biwi Kinect dataset

6. Implementation Details

In an ideal scenario, and without any resource limita-
tions, one would have to train the model with a batch size
at least twice the integration dimension to obtain a fully
ranked Gram matrix and directly use its inverse for the
alignment processes. We have proposed a method that al-
lows us to align the two distributions with reasonable batch
sizes, which requires us to introduce an additional hyperpa-
rameter 7', in addition to the two scaling factors for scaling
and angle losses. Following [2], we use [13] for model se-
lection to determine the hyper-parameters.



7. Limitation

One limitation of our work is the strong focus on regres-
sion tasks. While the inverse Gram Matrix brings improve-
ment for unsupervised domain adaptation for regression and
brings its motivation from the closed form of linear regres-
sion problems, extending this work to classification can be
interesting for future work. In addition, many benchmark
datasets used in this work are synthetic. MPI3D [6]and
Biwi Kinect [3] contains limited real-world data. How the
method behaves on even more complicated tasks in the real
world remains a future work, but can be potentially solved
by considering the setups in [7-9, 12]. In addition, real-
world scenarios may face the problem of unaligned or miss-
ing output values. Partial set and open set UDA for regres-
sion settings were not addressed in this paper.
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