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Abstract

In this supplementary PDF, we first provide implemen-
tation details, including network architecture and training
config in Sec. 1. Then we include extra quantitative results,
including the transfer learning result on AFHQ-Dog, an ex-
tra comparison of CREPS with AnyresGAN and ScaleParty,
and an additional ablation study in Sec. 2. Finally, we show
additional qualitative results in Sec. 3. Besides, we include
two extra image samples at high resolution, a qualitative
video, and our code at here.

1. CREPS Implementation Details

1.1. Architecture details

In this section, we describe in detail the implementation
of each component in our proposed method.

Synthesis Block As reported in the main paper, this block is
largely identical to the blocks in [4] with some minor modi-
fications. First, we change the kernel size of the convolution
operator from 3×3 to 1×1 one. Second, we dismiss the use
of small injection noise to the feature output as it is against
our objective of scale-invariant generation. Third, we dou-
ble the number of channels in this block compared to [4] to
improve the capacity of the bi-line features. This block both
receives and outputs bi-line features.

Refinements Block consists of two synthesis blocks with
the hidden width of 128 and 64, respectively (Tab. 1). In-
stead of bi-line features, this block input and output are both
2D features; the input feature map is decoded from previous
bi-line features. The residual output of each synthesis block
will be an RGB image in the shape of 3×R×R.

Decoder Block is a stack of fully-connected layers with
LeakyReLU activations in-between. The structure of this
block is illustrated in Tab. 2.

1Equal contribution.

1.2. Transfer learning details

Similar to Karras et al. [3], we train MetFaces and
AFHQ-Dog (next section) with adaptive discriminator aug-
mentation (ADA) [3] using weights trained on FFHQ-512.
Even though our FFHQ was trained with resolution 512 ×
512 only, we can easily train on resolution 1024 × 1024
simply by doubling the length of row and column coordi-
nates er and ec. The transfer learning results are reported in
Sec. 2.

1.3. Training config

To train our models, we start with the batch size of 128
and gamma of 0.5 for resolution 128 × 128. For higher
resolution, we decrease the batch size and increase gamma
to further stablilize the training. Specifically, for resolution
512 × 512, we use 32 and 10 for batch size and gamma
respectively. Lastly, we set the batch size and gamma as 8
and 32 for resolution 1024× 1024

Layer Input Shape Output Shape
SynthesisBlock(32, 128) 32×R×R 128×R×R
ToRGB(128, 3) 128×R×R 3×R×R
SynthesisBlock(128, 64) 32×R×R 64×R×R
ToRGB(64, 3) 64×R×R 3×R×R

Table 1. Structure of Refinements Block.

Layer Input Shape Output Shape
Fusion 32×R× 2D R×R× 32
Linear(32, 64) R×R× 32 R×R× 64
Linear(64, 128) R×R× 64 R×R× 128
Linear(128, 64) R×R× 128 R×R× 64
Linear(64, 32) R×R× 64 R×R× 32
Permute R×R× 32 32×R×R

Table 2. Structure of Decoder Block.
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2. Additional Quantitative Results

2.1. Transfer Learning Results on AFHQ-Dog

Besides MetFaces, we conduct a further experiment to
verify the adaptability of our model from FFHQ to AFHQ-
Dog. AFHQ-Dog consists of 4677 facial images of vari-
ous dog breeds at resolution 1024 × 1024. Following prior
works [3], we directly use the weight of CREPS trained on
FFHQ and continue the training on AFHQ-Dog. Our model
achieved an FID score of 9.7, which is slightly higher than
the FID score of StyleGAN2-ADA (7.4). However, qual-
itatively, the images generated by this model are of good
quality as illustrated in Fig. 5.

2.2. Comparison With AnyresGAN and ScaleParty

We provide an additional comparison in terms of FID
score with two prior works that support any-scale image
synthesis, including AnyresGAN [2] and ScaleParty [5], in
Tab. 3. Note that both of them make use of spatial con-
volution, so they are not scale-consistent. Here, the FID
scores of AnyresGAN are taken directly from the paper,
while those for ScaleParty are re-computed using their pub-
licly available code and pre-trained model.

2.3. Additional Ablation Study

In this section, we measure the influences of the de-
coder in our proposed asymmetric fusion on CREPS’s per-
formance. We omit the decoder π between synthesis blocks
and simplify the fusion scheme to E(l+1) = E(l)+F (l+1).
We ran this config on FFHQ resolution 128 × 128 and re-
ported the result in Tab. 4. As can be seen, the FID score of
this variant is even worse than the smaller config with d=4,
which proves that adding decoders to aggregate information
across channels can largely improve the generation quality.

3. Additional Qualitative Results

3.1. Super-resolution Comparison

By scaling the length of row and column coordinates er

and ec, CREPS can not only generate higher output reso-
lution but also produce finer details. As shown in Fig. 1,
the crop of an image generated by scaling the coordinate
of CREPS from 512 to 2048 has more details than directly
applying Lanczos upsampling on the corresponding image
generated at resolution 512× 512.

Additionally, we also provide two images of resolution
6144 × 6144 at here. Even though the images are not as
sharp as real ultra-high-resolution ones, it can be seen that
our produced images are much better than ones produced
by classical upsampling methods.

3.2. Scale Consistency Comparison

We provide a scale-consistency comparison video of
CREPS with previous any-scale synthesis architectures, in-
cluding AnyresGAN [2], ScaleParty [5], and CIPS [1] at
here. Note that, for a fair comparison, we use the provided
codes from each method to produce the video except for
ScaleParty, where we obtain the video directly from their
GitHub codebase 1. For clearer visualization, we highlight
the crop with the largest changes in each method’s picture
with a blue square.

As can be seen in the video, ScaleParty performs the
worst among the four methods, while AnyresGAN still
maintains a good degree of consistency since it inherits all
the advantages of StyleGAN3. However, it is still behind
INR-GANs, CIPS, and CREPS since it shows more promi-
nent changes in the highlighted crop compared with the lat-
ter.

3.3. Additional Geometric Transformation Results

Apart from scaling, our model can be used to sample
other types of geometric transformation, such as translation,
rotation, and distortion. Even though it should be stressed
that our model is geometry-consistent by nature with the use
of fully-connected layers, we also present some qualitative
results in the video at here to further verify our claim.

3.4. Additional Image Generation Results

We provide additional results generated by CREPS on
FFHQ and LSUN-Church in Figs. 2 and 3. We further ver-
ify that our proposed bi-line representation does not limit
the capacity of our models by performing transfer learning
from FFHQ-512 to MetFaces and AFHQ-Dog. The results
are shown in Fig. 4 and Fig. 5, respectively.
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Generator FFHQ-512 FFHQ-1024 LSUN Church-256
ScaleParty 6.23† 10.91† N/A

AnyresGAN 3.71∗ 4.06∗ 3.84∗

CREPS (ours) 4.43 4.09‡ 5.50

Table 3. Comparison of our method against other works in FID metric. ‘∗’ means the result is taken from original paper [2]. ‘†’ means the
result is obtained by re-computing the score using the code from author. ‘‡’ means the result is obtained by scaling the output resolution of
the FFHQ-512 model. N/A means the pretrained weight for this dataset is not released.

Figure 1. Comparison of CREPS high-resolution image synthesis with Lanzcos upsampling on FFHQ. Top: Images synthesized by CREPS
at resolution 512×512. Bottom left: the crop at resolution 512×512, upscaled with Lanczos upsampling. Bottom right: the corresponded
crop of CREPS at resolution 2048× 2048.

Configuration FID Memory Time
+ bi-line and d=8 8.23 1.6GB 0.03s
+ no decoders and d=8 6.91 1.7GB 0.03s
+ multiple decoders and d=4 6.46 1.6GB 0.03s
+ multiple decoders and d=8 4.66 1.7GB 0.04s

Table 4. Effects of the modifications of CREPS on the FFHQ
dataset in terms of FID score, memory usage, and running time.
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Figure 2. Sample images generated by our models on FFHQ resolution 512× 512

Figure 3. Sample images generated by our models on LSUN Church resolution 256× 256



Figure 4. Sample images generated by our models on MetFaces resolution 1024× 1024

Figure 5. Sample images generated by our models on AFHQ-Dog resolution 1024× 1024
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