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Overview

In this supplementary material, we provide additional ex-
periments, analysis, ablation study, and reproducibility de-
tails to support our findings. We provide Pytorch code,
demo and pre-trained models (target models/ evaluation
models/ augmented models) at: https://ngoc-nguy
en-0.github.io/re-thinking_model_inver
sion_attacks/.
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A. Additional experimental results

In this section, we provide additional experimental re-
sults that are not included in the main paper. More specifi-
cally, first, we evaluate the effect of the proposed method on
improving SOTA approaches in new tasks including image
classification and digit classification. Then, we use alterna-
tive metrics for evaluating SOTA MI approaches with and
without proposed improvements on identity loss Lid. The
additional experimental results in this section further sup-
port effectiveness of the proposed approach on improving
MI attacks.

A.1. Experimental results on CIFAR-10 and
MNIST

In Sec. 4.2 of the main paper, we mostly focus on the
face recognition task (on the CelebA dataset) and show
that the proposed method significantly improves SOTA ap-
proaches by increasing Attack Acc (inference accuracy on
reconstructed samples by an evaluation model; see Sec. 4.1.
of the main paper) and decreasing KNN Dist (distance be-
tween the reconstructed samples of a specific class/id and
corresponding data in the private dataset Dpriv; see Sec.
4.1).

In this section, we provide results for other tasks. More
specifically, as mentioned in Sec. 4.1, for GMI [20], and
KEDMI [1], following their own setup, we use digit classi-
fication task MNIST dataset, and object classification task
on the CIFAR-10 dataset. For each task, Table 1 tabulates
the performance of the SOTA approach together with three
variants of our proposed approach:

1. + LOM (Ours): We replace existing identity loss, Lid

with our improved identity loss Llogit
id (Sec. 3.1).

2. + MA (Ours): We replace existing identity loss, Lid

with our proposed Laug
id (Sec. 3.2).

3. + LOMMA (Ours): We combine both Llogit
id and Laug

id

for model inversion.

https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/
https://ngoc-nguyen-0.github.io/re-thinking_model_inversion_attacks/


Table 1. We report top 1 accuracies, the improvement compared
to the SOTA MI (Imp.), and KNN distance for two experiment
setups. Following exact experiment setups in [1]. For CIFAR-
10 experiments, Dpriv = CIFAR-10, Dpub = CIFAR-10, Mt =
VGG16, evaluation model = ResNet-18. For MNIST experiments,
Dpriv = MNIST, Dpub = MNIST, Mt = CNN(Conv3), evaluation
model = CNN(Conv5). The best results are in bold.

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
CIFAR-10/CIFAR-10/VGG16

KEDMI 95.2 ± 7.96 - 78.24
+ LOM (Ours) 100 ± 0 4.80 52.12
+ MA (Ours) 100 ± 0 4.80 53.17
+ LOMMA (Ours) 100 ± 0 4.80 63.41
GMI 43.20 ± 19.80 - 96.11
+ LOM (Ours) 80.80 ± 14.65 37.60 70.47
+ MA (Ours) 80.00 ± 18.01 36.80 93.46
+ LOMMA (Ours) 95.20 ± 7.96 52.00 80.30

MNIST/MNIST/CNN(Conv3)

KEDMI 46.40 ± 14.65 - 120.99
+ LOM (Ours) 55.20 ± 8.94 8.80 100.18
+ MA (Ours) 75.20 ± 6.57 28.80 72.38
+ LOMMA (Ours) 100.00 ± 0.00 53.60 58.81
GMI 8.00 ± 1.52 - 126.61
+ LOM (Ours) 15.20 ± 15.12 7.20 161.90
+ MA (Ours) 66.40 ± 19.86 58.40 78.38
+ LOMMA (Ours) 80.80 ± 17.38 72.80 83.56

Table 2. We follow exact the experiment setup of [17] for the VMI
experiments. Specifically, we use DCGAN and Flow model to
learn the distribution of z.

Method Attack Acc ↑ Imp. ↑ KNN Dist ↓
MNIST/EMNIST/ResNet-10

VMI 94.60 ± 0.13 - 68.53
+ LOM (Ours) 98.60 ± 0.09 4.00 88.13
+ MA (Ours) 98.98 ± 0.02 4.38 58.81
+ LOMMA (Ours) 100.00 ± 0.00 5.40 52.62

As one can see, on average each of the proposed solutions
drastically improves the SOTA approaches, and combining
these two solutions works even better.

Additionally, as mentioned in Sec. 4.1, for VMI [17],
following the setup in [17], we evaluate its performance for
digit classification on MNIST, and improvement brought by
the proposed method. Note that for a fair comparison, fol-
lowing VMI implementation in [17], in this experiment we
use EMNIST [4] as public dataset Dpub to acquire prior
knowledge. Results are shown in Table 2 for three vari-
ants of our proposed method, which indicates better per-
formance in terms of both attack accuracy (reaching 100%
attack accuracy) and decreasing KNN Distance.

Table 3. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Following exact experi-
ment setups in [1], here Dpriv = CelebA, Dpub = CelebA, eval-
uation model = face.evoLve. We report top-5 accuracies, the im-
provement compared to the SOTA MI (Imp.), and FID scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/CelebA/IR152

KEDMI 98.00 ± 1.96 - 28.06
+ LOM (Ours) 98.67 ± 0.00 0.67 39.03
+ MA (Ours) 98.33 ± 1.19 0.33 28.38
+ LOMMA (Ours) 98.67 ± 0.37 0.67 36.78
GMI 55.67 ± 7.14 - 57.11
+ LOM (Ours) 93.00 ± 3.41 37.33 48.87
+ MA (Ours) 89.00 ± 4.10 33.33 45.24
+ LOMMA (Ours) 97.67 ± 2.41 42.00 45.02

CelebA/CelebA/face.evoLve

KEDMI 97.33 ± 1.73 - 31.26
+ LOM (Ours) 99.33 ± 0.18 2.00 42.45
+ MA (Ours) 98.00 ± 0.94 0.67 32.08
+ LOMMA (Ours) 99.33 ± 0.33 2.00 38.69
GMI 45.33 ± 8.05 - 59.76
+ LOM (Ours) 84.33 ± 4.49 39.00 44.27
+ MA (Ours) 92.00 ± 2.25 46.67 51.15
+ LOMMA (Ours) 93.67 ± 2.42 48.33 44.07

CelebA/CelebA/VGG16

KEDMI 93.33 ± 3.36 - 25.46
+ LOM (Ours) 99.00 ± 0.18 5.67 34.45
+ MA (Ours) 95.33 ± 1.60 2.00 24.65
+ LOMMA (Ours) 98.00 ± 0.61 4.67 33.91
GMI 40.33 ± 4.74 - 58.03
+ LOM (Ours) 89.33 ± 2.73 49.00 46.40
+ MA (Ours) 81.33 ± 5.88 41.00 44.90
+ LOMMA (Ours) 95.67 ± 2.16 55.34 43.21

A.2. Experimental Results with Additional Metrics

As mentioned in Sec. 4.1 of the main paper, Attack Acc
and KNN Dist are common metrics used in literature to
evaluate the MI attacks. In this section, we include results
on two additional metrics namely: Top-5 Attack Acc and
FID [9]. Results in Table 3, Table 4, and Table 5 show that
the proposed method achieves better performance in terms
of Top-5 Attack Acc, and FID value.

B. Ablation Study

B.1. Different number of augmented models Maug

In Sec 3.2, we propose a model augmentation idea with
augmented models Maug . Here, we experiment using a dif-
ferent number of networks for Maug . Table 6 show that
increasing the number of the augmented models will im-
prove attack accuracy. We use 3 augmented models in our
main result as this configuration achieves a good tradeoff in
accuracy and computation.



Table 4. We report the results for VMI . Following exact experi-
ment setups in [17], here Dpriv = CelebA, Dpub = CelebA, Mt =
ResNet-34, evaluation model = IR-SE50. We report top-5 accura-
cies, the improvement compared to the SOTA MI (Imp.), and FID
scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/CelebA/ResNet-34

VMI 82.32 ± 0.21 - 16.82
+ LOM (Ours) 86.56 ± 0.27 4.24 25.42
+ MA (Ours) 86.16 ± 0.19 3.84 17.60
+ LOMMA (Ours) 91.02 ± 0.22 8.70 23.56

Table 5. We report the results for KEDMI and GMI for IR152,
face.evoLve and VGG16 target model. Following exact experi-
ment setups in [1], here Dpriv = CelebA, Dpub = FFHQ, evalu-
ation model = face.evoLve. We report top-5 accuracies, the im-
provement compared to the SOTA MI (Imp.), and FID scores.

Method Top-5 Attack Acc ↑ Imp. ↑ FID ↓
CelebA/FFHQ/IR152

KEDMI 85.33 ± 4.01 - 41.71
+ LOM (Ours) 88.67 ± 1.18 3.33 50.84
+ MA (Ours) 87.67 ± 2.28 2.33 39.88
+ LOMMA (Ours) 92.00 ± 0.57 6.60 45.67
GMI 36.33 ± 3.98 - 47.72
+ LOM (Ours) 80.33 ± 4.21 44.00 40.18
+ MA (Ours) 84.00 ± 5.35 47.67 35.41
+ LOMMA (Ours) 90.33 ± 3.16 54.00 37.58

CelebA/FFHQ/face.evoLve

KEDMI 80.67 ± 2.83 - 38.09
+ LOM (Ours) 91.33 ± 0.47 10.67 47.30
+ MA (Ours) 88.67 ± 2.44 8.00 35.94
+ LOMMA (Ours) 94.00 ± 0.68 13.33 47.51
GMI 33.33 ± 6.18 - 52.84
+ LOM (Ours) 74.67 ± 4.78 41.33 44.01
+ MA (Ours) 72.00 ± 4.64 38.67 35.58
+ LOMMA (Ours) 89.00 ± 2.73 55.67 40.03

CelebA/FFHQ/VGG16

KEDMI 74.00 ± 4.05 - 36.18
+ LOM (Ours) 81.67 ± 1.19 7.67 43.76
+ MA (Ours) 80.33 ± 3.27 6.33 35.02
+ LOMMA (Ours) 85.33 ± 1.98 11.33 40.26
GMI 25.67 ± 5.13 - 53.17
+ LOM (Ours) 70.67 ± 3.92 45.00 42.60
+ MA (Ours) 62.33 ± 5.36 36.67 36.04
+ LOMMA (Ours) 86.33 ± 5.17 60.67 35.59

B.2. Different network architectures for Maug

In this section, we provide additional results by using
different structures for augmenting the target model using
Maug in the MI process. Note that the architecture of all
these models is different from the one used for target model
Mt.

More specifically, we use three different combinations

for Maug , each of which contains three models: (i)
{EfficientNet-B0, EfficientNet-B1, EfficientNet-B2}, and
(ii) {DenseNet121, DenseNet161, DenseNet169}, and (iii)
{EfficientNet-B0, DenseNet121, MobileNetV3}. Results
in Table 7 shows that +MA (Ours) consistently improves
the attack accuracy and KNN distance with different net-
work architectures.

B.3. The effect of different sizes of public dataset

We conduct additional experiments using different sizes
of Dpub (10%, 50%) to emulate the different quality of prior
information. The results for KEDMI [1] are shown in Table
8. The key observations are:

• Baseline attack accuracies are poorer under limited
Dpub, i.e. Dpub = 10%.

• Our proposed method can outperform existing SOTA
under varying degrees of prior information although
the improvement obtained by KD is marginal under
Dpub = 10%.

C. Additional analysis and details on experi-
mental setups

C.1. Details on combining Llogit
id and Laug

id

We provide details of combining Llogit
id and Laug

id . We
substitute Llogit

id (Eqn. 3 of main paper) into Laug
id (Eqn. 4

of main paper) for an inversion targeting class k of the target
model Mt, using augmented model M (i)

aug . In particular,
starting from Eqn. 4 of the main paper:

Laug
id (x; y) = γt · Lid(x; y,Mt)

+γaug ·
Naug∑
i=1

Lid(x; y,M
(i)
aug)

= γt · Llogit
id (x; y,Mt)

+γaug ·
Naug∑
i=1

Llogit
id (x; y,M (i)

aug)

= γt · (− log pT
t wt,k + λ||pt − preg||22)

+γaug ·
Naug∑
i=1

(− log (p(i)
aug)

T (w(i)
aug,k)

+λ||p(i)
aug − preg||22)

≈ γt · (− log pT
t wt,k)

+γaug ·
Naug∑
i=1

(− log (p(i)
aug)

T (w(i)
aug,k))

+λ′||pt − preg||22 (1)



Table 6. We report top-1 attack accuracies, the improvement compared to the SOTA MI (Imp.), and KNN distance for using different
numbers Naug of network Maug . Following exact experiment setups in [1], here method = KEDMI, Dpriv = CelebA, Dpub = CelebA,
Mt = IR152, evaluation model = face.evoLve. We select Maug from the set of 4 networks including EfficientNet-B0, EfficientNet-B1,
EfficientNet-B2, EfficientNet-B3. The number of network Maug increases from 0 (Baseline KEDMI) to 4. It shows that using more Maug

improves the attack accuracy and KNN distance.

Method Naug Maug Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - - 80.53 ± 3.86 - 1247.28
+ MA 1 EfficientNet-B0 81.20 ± 3.75 0.67 1234.16
+ MA 2 EfficientNet-B0, EfficientNet-B1 84.47 ± 2.99 3.94 1223.56
+ MA 3 EfficientNet-B0, EfficientNet-B1, EfficientNet-B2 84.73 ± 3.76 4.20 1220.23
+ MA 4 EfficientNet-B0, EfficientNet-B1, EfficientNet-B2, EfficientNet-B3 85.87 ± 2.63 5.34 1217.15

Table 7. We report top-1 attack accuracies, the improvement compared to the SOTA MI (Imp.), and KNN distance for different structures
of network Maug . Following exact experiment setups in [1], here method = KEDMI, Dpriv = CelebA, Dpub = CelebA, Mt = IR152,
evaluation model = face.evoLve. We select different network architectures for our experiment. Specifically, we use Ours-1 = {EfficientNet-
B0 [16], EfficientNet-B1 [16], EfficientNet-B2 [16]}, Ours-2 = {DenseNet121 [11], DenseNet161 [11], DenseNet169 [11]}, Ours-3 =
{EfficientNet-B0, DenseNet121 [11], MobileNetV3-large [10]}. It shows that using different network architectures Maug consistently
improves the attack accuracy and KNN distance.

Method Maug Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - 80.53 ± 3.86 - 1247.28
+ MA (Ours-1) EfficientNet-B0, EfficientNet-B1, EfficientNet-B2 84.73 ± 3.76 4.20 1220.23
+ MA (Ours-2) DenseNet121, DenseNet161, DenseNet169 89.07 ± 3.32 8.54 1211.73
+ MA (Ours-3) EfficientNet-B0, DenseNet121, MobileNetV3-large 86.53 ± 1.98 6.00 1204.94

Here, pt, wt,k are penultimate layer activation and last layer
weight for the target model Mt; p(i)

aug , w(i)
aug,k are penul-

timate layer activation and last layer weight for the aug-
mented model M (i)

aug . Note that one regularization is suf-
ficient as shown in the last step. Eqn. 1 above is used in
Eqn. 1 of the main paper in the inversion step using the
proposed method.

C.2. Details on improving KEDMI baseline

We apply a simple technique that is introduced by GMI
[20] to get better results for KEDMI [1]. Specifically, after
model inversion, and sampling z from the learned distribu-
tion, we clip all elements of z into [−1, 1], which is shown
to be beneficial in [20]. In Table 9, we observe that clip-
ping z help to boost the attack accuracy of KEDMI and the
reconstructed images are more similar to the private dataset
as KNN distances are reduced. Therefore, for all the exper-
iments with KEDMI in the main paper and Supp, we clip z
to get better results and we compare with this better version
of KEDMI.

C.3. Additional details on computing preg

In Sec. 3.1, we propose an improved formulation for
identity loss Llogit

id which includes a regularization term
||p − preg||22 to prevent unbound growth of norm during

optimization. Here we provide additional details on com-
puting preg .

Given that the attacker has no access to private training
data, we estimate preg by a simple method using public
data. We firstly construct the set of penultimate layer fea-
tures of public data using the target model and estimate the
mean µpen and variance σ2

pen:

µpen =
1

N

N∑
i=1

Mpen(xi) (2)

σ2
pen =

1

N

N∑
i=1

(Mpen(xi)− µpen)
2 (3)

where xi is a sample from public dataset Dpub, and Mpen()
operator returns the penultimate layer representations of the
target model Mt for a given input x. We analyze two ways
to estimate preg as follow:

• Fixed preg where preg = µpen.

• preg is sampled using the prior distribution
N (µpen, σpen).

Empirically, we use N = 5, 000 images from the public
dataset Dpub to estimate µpen and σpen. The results show
that using preg which is sampled from N (µpen, σpen) gives



Table 8. Sensitivity of the proposed method to prior information, Dpub: We use Dpriv/Dpub = CelebA, Mt = face.evoLve, evaluation =
face.evoLve and KEDMI [1]. We report top 1 MI attack accuracy and KNN distance using 10%, 50% and 100% of Dpub. As GAN is
trained on Dpub, it affects the baseline KEDMI and our proposed method. The results show that + LOM and + MA consistently improve
upon the baseline.

Dpub = 10% Dpub = 50% Dpub = 100%

Attack Acc ↑ KNN Dist ↓ Attack Acc ↑ KNN Dist ↓ Attack Acc ↑ KNN Dist ↓
KEDMI 58.33 ± 5.25 1450.06 79.07 ± 3.76 1265.37 81.40 ± 3.25 1248.32
+ LOM (Ours) 67.27 ± 1.83 1395.38 89.27 ± 0.96 1202.45 92.53 ± 1.51 1183.76
+ MA (Ours) 61.80 ± 3.03 1421.83 82.20 ± 2.77 1244.21 85.07 ± 2.71 1222.02
+ LOMMA (Ours) 74.40 ± 2.21 1328.79 89.67 ± 0.76 1170.37 93.20 ± 0.85 1154.32

Table 9. We apply a simple technique that is introduced by GMI [20] to get better baseline results for KEDMI [1]. We report the results
for KEDMI with and without z clipping for IR152, face.evoLve, and VGG16 target model. Following exact experiment setups in [1], here
Dpriv = CelebA, Dpub = CelebA, evaluation model = face.evoLve. We report top-1 attack accuracies, the improvement compared to the
SOTA MI (Imp.), and KNN distance. The improvement using z clipping is clear.

Method Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI w/o z clipping 78.53 ± 3.45 - 1270.87
KEDMI with z clipping 80.53 ± 3.86 2.00 1247.28

CelebA/CelebA/face.evoLve
KEDMI w/o z clipping 78.00 ± 4.09 - 1290.62
KEDMI with z clipping 81.40 ± 3.25 3.40 1248.32

CelebA/CelebA/VGG16
KEDMI w/o z clipping 67.93 ± 4.24 - 1345.03
KEDMI with z clipping 74.00 ± 3.10 6.07 1289.88

Table 10. We report the results for KEDMI using a fixed preg

or sampling from a distribution approximated for preg . We use
three different target models: IR152, face.evoLve, and VGG16.
Following exact experiment setups in [1], here Dpriv = CelebA,
Dpub = CelebA, evaluation model = face.evoLve. We report top-
1 attack accuracies, the improvement compared to the SOTA MI
(Imp.), and KNN distance.

Method Attack Acc ↑ KNN dist ↓
CelebA/CelebA/IR152

+ LOM (Fixed preg) 92.27 ± 1.37 1155.92
+ LOM (Ours) 92.47 ± 1.41 1168.55

CelebA/CelebA/face.evoLve
+ LOM (Fixed preg) 90.40 ± 1.68 1257.95
+ LOM (Ours) 92.53 ± 1.51 1183.76

CelebA/CelebA/VGG16
+ LOM (Fixed preg) 85.60 ± 1.79 1259.60
+ LOM (Ours) 89.07 ± 1.46 1218.46

better performance than using fixed preg = µpen (see Table
10). Therefore, all the results reported in the main paper
use the preg ∼ N (µpen, σpen). We remark again that preg

is estimated from public dataset.

C.4. Details on regularization parameter λ

In Sec 3.1 of the main paper, the regularization term
||p−preg||22 includes a parameter λ which controls the effect
of this term. In this section, we evaluate the effect of this pa-
rameter by examining different values of λ on model inver-
sion performance. Results in Table 11 show that attack ac-
curacy is improved over SOTA KEDMI with our proposed
logit loss even without the regularization term (λ = 0).
However, we get better results if the regularization is added
e.g. λ = 1.0. Due to its better performance, we use λ = 1.0
in all experiments with the proposed method.

C.5. Computational overhead

In order to investigate the computational overhead intro-
duced by our proposed method, in this section, we report
the running time for reconstructing images of 300 identi-
ties on CelebA/CelebA/IR152 setup for KEDMI and GMI,
and 100 identities on CelebA/CelebA/ResNet-34 for VMI.
All the experiments of KEDMI and GMI are performed on
an NVIDIA GeForce RTX 3090 GPU, and the experiments
of VMI are performed on an NVIDIA RTX A5000 GPU.
The results in Table 12 show that + LOM does not affect
the training time compared to the baseline. However, + MA
adds some computational overhead as it uses additional net-



Table 11. We report the results for KEDMI with different λ values
using IR152 as target model. Following exact experimental setups
in [1], here Dpriv = CelebA, Dpub = CelebA, evaluation model =
face.evoLve. We report top-1 attack accuracies, the improvement
compared to the SOTA MI (Imp.), and KNN distance.

Method λ Attack Acc ↑ Imp. ↑ KNN dist ↓
CelebA/CelebA/IR152

KEDMI - 80.53 ± 3.86 - 1247.28
+ LOM 0 90.33 ± 1.64 9.80 1198.39
+ LOM 0.5 89.53 ± 1.21 9.00 1175.35
+ LOM 1.0 92.47 ± 1.41 11.94 1168.55
+ LOM 2.0 91.87 ± 1.09 11.34 1125.54
+ LOM 10.0 85.80 ± 1.24 5.27 1110.80

works Maug during the inversion.

Table 12. Computational complexity of different algorithms in
terms of average running time (GPU hours) using single GPU. We
use KEDMI, GMI, and VMI approaches as the baseline. We have
also included the running time Ratio when compared to the corre-
sponding baseline.

Method RunTime (hrs) Ratio

KEDMI 0.35 1.00
+ LOM (Ours) 0.35 1.00
+ MA (Ours) 0.60 1.71
+ LOMMA (Ours) 0.60 1.72

GMI 1.61 1.00
+ LOM (Ours) 1.61 1.00
+ MA (Ours) 2.83 1.76
+ LOMMA (Ours) 2.85 1.77

VMI 364.67 1.00
+ LOM (Ours) 368.24 1.01
+ MA (Ours) 368.69 1.01
+ LOMMA (Ours) 379.41 1.04

C.6. Hyperparameters

In the experiments of GMI and KEDMI, we do the inver-
sion using SGD optimizer with the learning rate lr = 0.02
in 2400 iterations which are used from the released code
of KEDMI 1. We set γt = γaug = 100/(Naug + 1) and
λ = 100, where Naug is the number of models used for
augmented model Maug . We estimate preg for each clas-
sifier by using N = 5, 000 images from the public dataset
Dpub. In the experiments of VMI, we use 20 epochs (equal
to 3120 iterations) to learn the distribution of each identity.

C.7. Dataset

Experiments of KEDMI and GMI. We follow exact
experimental setups in [1]. For the CelebA task, we use
the dataset divided by [1] for all of the experiments. In

1https://github.com/SCccc21/Knowledge-Enriched-DMI

particular, the private dataset has 30,027 images of 1000
identities and the public dataset has 30000 images that are
non-overlapping identities with the private dataset. In the
experiments in Table 5 (main paper), we use FFHQ [13]
as the public dataset to train GAN and distill knowledge to
augmented models. For MNIST and CIFAR-10 tasks, the
private dataset contains images with labels from 0 to 4 and
the public dataset includes the rest of the dataset with labels
from 5 to 9.

Experiments of VMI. We follow exact experimental
setup in [17]. We use the CelebA dataset and MNIST
dataset for VMI experiments. For CelebA, we follow [17] to
divide the dataset into two parts. The first part contains im-
ages of 1000 most frequent identities which uses as private
dataset. The rest of dataset is used as public dataset. For
the experiments on MNIST dataset, we use EMNIST [4] as
public dataset to train GAN and Maug .

D. Additional Visualizations
D.1. Additional Results for GMI

Similar to results reported for KEDMI (Figure 4, main
paper), in this section, we show results for GMI [20] under
IR152 target classifier to show the efficacy of our proposed
methods. The result is shown in Figure 1.

 () ()Attack  
Acc.

kNN

30.60% 1609.29

78.53% 1289.62

61.20% 1389.99

82.40% 1254.32

GMI

+ LOM
(Ours)
+ MA
(Ours)

+ LOMMA
(Ours)

Existing
SOTA

Private

Data
Training

Figure 1. Qualitative / Quantitative (Top1 Attack Acc., KNN Dist)
results to demonstrate the efficacy of our proposed method. We
use GMI [20], Dpriv = CelebA [14], Dpub = CelebA [14] and M
= IR152 [8]. As one can observe, our proposed method achieves
better reconstruction of private data both visually and quantita-
tively (validated by KNN results) resulting in a significant boost
in attack performance.

D.2. Penultimate layer visualization for GMI,
KEDMI and VMI

In this section, we show additional penultimate layer vi-
sualizations to support our formulation of Llogit

id as an im-
proved MI Identity Loss. We show visualizations for GMI
[20] and VMI [17] in Figures 2 and 5 respectively. Further,
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Figure 2. Visualization of the penultimate layer representations (Dpriv = CelebA [14], Dpub = CelebA [14], Mt = IR152 [8], Evaluation
Model = face.evoLve [2], Inversion iterations = 2400) for private training data and reconstructed data using GMI [20]. Following exact
evaluation protocol in [1], we use face.evoLve [2] to extract representations. We show results for 3 randomly chosen identity. We include
KNN distance (for different iterations) and final attack accuracy following the protocol in [1]. For each identity, we also include a randomly
selected private training data and the closest reconstructed sample at iteration=2400. 1⃝ Identity loss in SOTA MI methods [1, 17, 20]
(Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations during inversion, we observe 2 instances (e.g.
target identity 57 and 232) where GMI [20] (using Eqn. 2, main paper for identity loss) is unable to reconstruct data close to private training
data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed identity loss, Llogit

id (Eqn. 3, main
paper), can effectively guide reconstruction of data close to private training data (Bottom). This can be clearly observed using both
penultimate layer representations and KNN distances for all 3 target classes 57, 143 and 232. Best viewed in color.
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Figure 3. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [14], Dpub = CelebA [14],
Mt = face.evoLve [2], Evaluation Model = face.evoLve [2], Inversion iterations = 2400) using GMI [20]. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).

we show penultimate layer visualization for an additional
target classifier, face.evoLve using KEDMI [1] in Figure 8
to validate our findings.

D.3. Our reconstruction results

Given that the goal of MI is to reconstruct private train-
ing data, in this section, we show reconstructed samples for
5 additional setups using our proposed method. We show
reconstruction results using GMI [20] and VMI [17] in Fig-
ures 7 and 9 respectively. Further, we show additional re-
construction results for GMI and KEDMI using a different

target classifier (face.evoLve) in Figures 3 and 4 to validate
the efficacy of our proposed method. Finally, we show re-
construction results for Cross-dataset MI in Figure 6. We re-
mark that cross-dataset MI is a challenging attack setup due
to large distribution shift between private and public data.
Following [17], we use FFHQ [13] as the public dataset. To
conclude, we remark that the samples reconstructed using
our proposed method closely resembles the private training
data in many instances, and this is quantitatively validated
using MI attack accuracy.
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Figure 4. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [14], Dpub = CelebA [14],
Mt = face.evoLve [2], Evaluation Model = face.evoLve [2], Inversion iterations = 2400) using KEDMI [1]. We remark that these results
are obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper). We remark that in the standard CelebA

benchmark, our method boosts attack accuracy significantly, achieving more than 90% attack accuracy for the first time in contemporary
MI literature.
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Figure 5. Visualization of the penultimate layer representations (Dpriv = CelebA [14], Dpub = CelebA [14], Mt = ResNet34 [17],
Evaluation Model = IR-SE50 [17], Inversion epochs = 30) for private training data and reconstructed data using VMI [17]. Following exact
evaluation protocol in [17], we use IR-SE50 to extract representations. We show results for 3 randomly chosen identity. We include KNN
distance and final attack accuracy. Given that we strictly follow [17], we remark that due to the use of IR-SE50 evaluation classifier to
extract penultimate layer representations, the features have different scales resulting in lower KNN distances (compared to KEDMI and
GMI results). For each identity, we include a randomly selected private training data and the closest reconstructed sample (epoch = 30).
1⃝ Identity loss in SOTA MI methods [1,17,20] (Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations

during inversion, we observe an instance (e.g. target identity 29) where VMI [17] (using Eqn. 2, main paper for identity loss) is unable to
reconstruct data close to private training data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed
identity loss, Llogit

id (Eqn. 3, main paper), can effectively guide reconstruction of data close to private training data (Bottom). This
can be observed using penultimate layer representations and KNN distances for all 3 target classes 29, 28 and 42. Best viewed in color.

E. Additional Related work

Given a trained model, Model Inversion (MI) aims to
extract information about training data. Fredrikson et al.
[7] propose one of the first methods for MI. The authors
found that attackers can extract genomic and demographic

information about patients using the ML model. In [6],
Fredrikson et al. extended the problem to the facial recog-
nition setup where the authors can recover the face images.
In [19], Yang et al. proposed adversarial model inversion
which uses the target classifier as an encoder to produce a
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Figure 6. Cross-dataset MI results. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA
[14], Dpub = FFHQ [13], Mt = IR152 [8], Evaluation Model = face.evoLve [2], Inversion iterations = 2400) using KEDMI [1]. Cross-
dataset MI is a challenging setup due to the large distribution shift between private and public data. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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Figure 7. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [14], Dpub = CelebA [14],
Mt = IR152 [8], Evaluation Model = face.evoLve [2], Inversion iterations = 2400) using GMI [20]. We remark that these results are
obtained by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).
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Figure 8. Visualization of the penultimate layer representations (Dpriv = CelebA [14], Dpub = CelebA [14], Mt = VGG16 [15], Evaluation
Model = face.evoLve [2], Inversion iterations = 2400) for private training data and reconstructed data using KEDMI [1]. Following exact
evaluation protocol in [1], we use face.evoLve [2] to extract representations. We show results for 3 randomly chosen identity. We include
KNN distance (for different iterations) and final attack accuracy following the protocol in [1]. For each identity, we also include a randomly
selected private training data and the closest reconstructed sample at iteration=2400. 1⃝ Identity loss in SOTA MI methods [1, 17, 20]
(Eqn. 2, main paper) is sub-optimal for MI (Top). Using penultimate representations during inversion, we observe 2 instances (e.g.
target identity 207 and 116) where KEDMI [1] (using Eqn. 2, main paper for identity loss) is unable to reconstruct data close to private
training data. Hence, private and reconstructed facial images are qualitatively different. 2⃝ Our proposed identity loss, Llogit

id (Eqn. 3,
main paper), can effectively guide reconstruction of data close to private training data (Bottom). This can be clearly observed using
both penultimate layer representations and KNN distances for all 3 target classes 50, 207 and 116. Best viewed in color.
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Figure 9. We show private data (top), our reconstruction results (bottom) and Attack accuracy (Dpriv = CelebA [14], Dpub = CelebA [14],
Mt = ResNet34 [17], Evaluation Model = IR-SE50 [5], Inversion epochs = 30) using VMI [17]. We remark that these results are obtained
by combining Llogit

id and Laug
id (referred to as + LOMMA throughout the paper).

prediction vector. A second network takes the prediction
vector as the input to reconstruct the data.

Instead of performing MI attacks directly on high-
dimensional space (e.g. image space), recent works have
proposed to reduce the search space to latent space by train-
ing a deep generator [1,17,18,20]. In particular, a generator
is trained on an auxiliary dataset that has a similar structure
to the target image space. In [20], the authors proposed
GMI which uses a pretrained GAN to learn the image struc-
ture of the auxiliary dataset and finds the inversion images
through the latent vector of the generator. Chen et al. [1]
extend GMI by training discriminator to distinguish the real
and fake samples and to be able to predict the label as the
target model. Furthermore, the authors proposed modeling
the latent distribution to reduce the inversion time and im-
prove the quality of reconstructed samples. VMI [17] pro-
vides a probabilistic interpretation for MI and proposes a
variational objective to approximate the latent space of tar-
get data.

Zhao et al. [21] propose to embed the information of
model explanations for model inversion. A model explana-
tion is trained to analyze and constrain the inversion model
to learn useful activations. Another MI attack type is called
label-only MI attacks which attackers only access the pre-
dicted label without a confidence probability [3, 12]. Re-
cently, Kahla et al. [12] propose to estimate the direction
to reach the target class’s centroid for an MI attack. In this
work, we instead focus on a different problem and propose
two improvements to the identity loss which is common
among all SOTA MI approaches.
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